

Operating System API
Case study: UNIX shell

Unix shell
● Provides interactive command execution
● Was part of OS kernel initially, now a normal program
● The shell interface looks like this:

$ _ Prompt

Keyboard
cursor

Unix shell
$ cat foo.txt
This is the content of
file foo.txt
$ _

Command typed by user
Output of command –
contents of file “foo.txt”

Shell ready for
another input

Unix shell: barebones code
while (1) {
 write (1, “$ “, 2); // print “$ “

readcommand(command, args);
// ... spawn new process and wait for it

to finish
}

Unix shell: barebones code

write() syscall:
write(fd, pointer, size) – write ‘size’ bytes

pointed to by ‘pointer’ to file (or device) backed
by file-descriptor ‘fd’.

while (1) {
 write (1, “$ “, 2); // print “$ “

readcommand(command, args);
// ... spawn new process and wait for it

to finish
}

Unix I/O facilities
● Set of syscalls: read, write, open, close ...
● fd = open(“filename”, ...);

● ‘fd’ is the “file descriptor” for the file
– The OS maintains a table of open file descriptors

for each process.

while (1) {
write (1, “$ “, 2);
readcommand(command, args);
if ((pid = fork()) == 0) // create ‘copy’

 // of this
 // process

exec(command, args); // execute command
else if (pid > 0)

wait(0);
 else // handle error
}

Unix process management facilities
● Set of syscalls: fork, exec, wait, exit, ...
● fork() creates a replica of current process

– Both processses then continue execution from the
next statement.

fork()
Child – fork() returns 0

Parent – fork() returns
pid of child
pid => process identifier

Original
process

Unix process management facilities
● Set of syscalls: fork, exec, wait, exit, ...
● fork() creates a replica of current process

if ((pid = fork()) == 0)
exec(command, args);

else if (pid > 0)
wait(0);

Child part}
} Parent part

Unix process management facilities
● Set of syscalls: fork, exec, wait, exit, ...
● fork() creates a replica of current process

if ((pid = fork()) == 0)
exec(command, args);

else if (pid > 0)
wait(0);

Child part}
} Parent part

● exec() executes program specified by command
-- replacing the current process

Unix process management facilities
if ((pid = fork()) == 0)

exec(command, args);
else if (pid > 0)

wait(0);

Child part}
} Parent part

● exec() executes program specified by command --
replacing the current process

● wait() suspends the current process until the child
calls exit()

Unix process management facilities
● fork() + exec() required for executing a new program
● Was somewhat simple to implement in those days
● Simple but enables other use cases

– I/O redirection, pipes etc.
● Windows has CreateProcess() for the same job

– 10 formal parameters
● Performance differences due to copy operation

More on Unix I/O facilities
● Each process has 3 OS provided file-descriptors open by

default:
– stdin (0), stdout (1), stderr (2)

● For programs started by shell:
– stdin connected to keyboard
– stdout connected to console
– stderr (also) connected to console

Unix shell – I/O redirection

$ ls > tmp1
$ cat tmp1
Desktop Documents Downloads Music Pictures Videos

● ‘>’ redirects output (stdout) of ls to file tmp1
● Very useful construct – shell essentially acting as a

programming environment
– Similar functionality would otherwise require changes to the

program

Unix shell – I/O redirection
● ‘>’ for redirecting stdout
● ‘<’ for redirecting stdin
● ‘2>’ for redirecting stderr

$ wc < tmp1 > tmp2
$ cat tmp2
1 6 50

Unix shell – I/O redirection
implementation

if ((pid = fork()) == 0) {
// close default stdin
close(0);
open(stdin_filename);
// close default stdout
close(1);
open(stdout_filename);
exec(command, args);

}

I/O redirection – Another example
$ sh < tests.sh > out
$ grep “fail” < out > fails
$ wc -l < fails
1
$ rm out fails

● Executes commands in tests.sh, saving output to file
out

● Search for “fail” in out, save the results in file fails
● Count the number of lines in fails

Introducing “pipe”
$ sh < tests.sh > out
$ grep “fail” < out > fails
$ wc -l < fails
1
$ rm out fails

$ sh < tests.sh | grep “fail” | wc -l

Same solution using pipe “|” construct:

“pipe” -- overview

output of ‘sh’
(stdout)

input of ‘grep’
(stdin)

● Unidirectional of data (bytes) from
one process to another

● Kernel manages the flow

pipe

“pipe” -- syscall
● Signature: pipe(int[2])
● Usage:

int pfd[2];

pipe(pfd);

● pfd[0] – read end of pipe
● pfd[1] – write end of pipe

“pipe” -- inter-process communication
(IPC)

int pfd[2];
pipe(pfd);
if ((pid = fork()) == 0) {

write(pfd[1], “Hello from child”, 16);
exit(0);

} else (pid > 0) {
sz = read(pfd[0], buf, 100); // blocks until

write is executed by child
write(1, buf, sz);
wait(0);

}

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

