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Class details

● Mixed undergraduate and graduate

● Instructor: Dr. Sorav Bansal

● Web page

https://iitd-plos.github.io/os/2020

● Piazza

https://piazza.com/iit_delhi/fall2019/col331col633



Course Outline

● Lectures

○ Understand operating system design and implementation

● Reading

○ Xv6 book + source code

● Labs

○ Hands-on experience extending a small O/S



What is an Operating System?



Operating System (OS)



Design Approach

Monolithic Software

● All software components (applications) are contained in a 

single program and can directly communicate with each 

other using function calls.

Issues:

● Hard to manage and update

● Trust issues between different programs



Operating System (OS)



Operating System (OS)



Operating System (OS)

● Abstract the hardware for convenience and portability

● Support a wide range of applications

● Multiplex the hardware among multiple applications

● Isolate applications in order to contain bugs and Security

● Provide high performance



OS research

● Variety of hardwares ranging from embedded devices to 

multi-core systems

● Reliability

● Performance



What is the right set of abstractions to 
be provided by an OS?



OS abstractions

● Filesystem -- disk

● Process -- CPU

● Address space -- memory

● Interactive shell -- execute commands



OS abstractions

● Filesystem -- disk

● Process -- CPU

● Address space -- memory

● Interactive shell -- execute commands



File system abstraction

● How should the OS manage a persistent device? 

● What are the APIs?



File system abstraction

● File– Identified with file name (human readable) and a 

OS-level identifier (“inode number”) 

● Directory contains other subdirectories and files, along 

with their inode numbers. 

● Stored like a file, whose contents are filename-to-inode 

mappings

 



File system abstraction

 

Files and directories arranged in a tree, starting with root (“/”)

 



OS APIs

What API does the OS provide to user programs?

● API = Application Programming Interface

● = functions available to write user programs

 API provided by OS is a set of “system calls” – System call is 

a function call into OS code that runs at

● a higher privilege level of the CPU

● Sensitive operations (e.g., access to hardware) are 

allowed only at a higher privilege level 



OS APIs or System calls

   CPU



Creating Files

int fd = open("filename") 

● Returns a number called “file descriptor”

● A file descriptor (fd) is just an integer, private per process

● Existing files must be opened before they can be 

read/written, Also uses open system call, and returns fd

● All other operations on files use the file descriptor

● close() system call closes the file



Reading/Writing Files

Reading/writing files: read()/write() system calls

Arguments: file descriptor, buffer with data, size

read(fd, buf, 100) 

write(fd, buf, 100)



File system abstraction

int fd = open("foo") 

read(fd, buf, 100) 

write(fd, buf, 100)

close(fd)



OS abstractions

● Filesystem -- disk

● Process -- CPU

● Address space -- memory

● Interactive shell -- execute commands



Process Abstraction

● OS provides the process abstraction

○ Process: a running program

○ OS creates and manages processes and Loads 

program executable (code, data) from disk to 

memory

● Each process has the illusion of having the complete 

CPU

● OS timeshares CPU between processes 

● OS enables coordination between processes



Process Abstraction

● A unique identifier (PID)

● Memory image

○ Code & data (static) 

○ Stack and heap (dynamic)

● CPU context: registers 

○ Program counter 

○ Stack pointer

● File descriptor table

○ Pointers to opened files and devices 



Process Abstraction

● Allocates memory and creates memory image

○ Loads code, data from disk exe 

○ Creates runtime stack, heap

● Opens basic files – STD IN, OUT, ERR

● Initializes CPU registers 

○ PC points to first instruction 



Interactive Shell

● Special program inside operating system

● Will take commands from user

● Interpret the command as filename

● Loads the filename as a process in memory

● Transfers the control to newly created process



Interactive Shell

● $ browser



Interactive Shell

● $ browser

$ |



Interactive Shell



Process related system calls

● fork() 

● exec() 

● exit()



Process related system calls

● exec(“filename”)

○ Makes a process execute a given executable 

○ e.g. SHELL process makes a system call 

■ exec(“browser”)

○ “SHELL” program will be replaced by “browser” 

program in memory



Process related system calls

● fork() creates a new child process 

○ e.g. SHELL process makes a fork() system call 



Process related system calls



Process related system calls



OS APIs

So, should we rewrite programs for each OS?

● POSIX API: a standard set of system calls that an OS must 

implement

● Programs written to the POSIX API can run on any POSIX 

compliant OS

● Program language libraries hide the details of invoking system calls 

● The printf function in the C library calls the write system call to write 

to screen 

● User programs usually do not need to worry about invoking system 

calls
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