
Lecture 1: Operating Systems

 Shubhani

COL331/COL633

Class details

● Mixed undergraduate and graduate

● Instructor: Dr. Sorav Bansal

● Web page

https://iitd-plos.github.io/os/2020

● Piazza

https://piazza.com/iit_delhi/fall2019/col331col633

Course Outline

● Lectures

○ Understand operating system design and implementation

● Reading

○ Xv6 book + source code

● Labs

○ Hands-on experience extending a small O/S

What is an Operating System?

Operating System (OS)

Design Approach

Monolithic Software

● All software components (applications) are contained in a

single program and can directly communicate with each

other using function calls.

Issues:

● Hard to manage and update

● Trust issues between different programs

Operating System (OS)

Operating System (OS)

Operating System (OS)

● Abstract the hardware for convenience and portability

● Support a wide range of applications

● Multiplex the hardware among multiple applications

● Isolate applications in order to contain bugs and Security

● Provide high performance

OS research

● Variety of hardwares ranging from embedded devices to

multi-core systems

● Reliability

● Performance

What is the right set of abstractions to
be provided by an OS?

OS abstractions

● Filesystem -- disk

● Process -- CPU

● Address space -- memory

● Interactive shell -- execute commands

OS abstractions

● Filesystem -- disk

● Process -- CPU

● Address space -- memory

● Interactive shell -- execute commands

File system abstraction

● How should the OS manage a persistent device?

● What are the APIs?

File system abstraction

● File– Identified with file name (human readable) and a

OS-level identifier (“inode number”)

● Directory contains other subdirectories and files, along

with their inode numbers.

● Stored like a file, whose contents are filename-to-inode

mappings

File system abstraction

Files and directories arranged in a tree, starting with root (“/”)

OS APIs

What API does the OS provide to user programs?

● API = Application Programming Interface

● = functions available to write user programs

 API provided by OS is a set of “system calls” – System call is

a function call into OS code that runs at

● a higher privilege level of the CPU

● Sensitive operations (e.g., access to hardware) are

allowed only at a higher privilege level

OS APIs or System calls

 CPU

Creating Files

int fd = open("filename")

● Returns a number called “file descriptor”

● A file descriptor (fd) is just an integer, private per process

● Existing files must be opened before they can be

read/written, Also uses open system call, and returns fd

● All other operations on files use the file descriptor

● close() system call closes the file

Reading/Writing Files

Reading/writing files: read()/write() system calls

Arguments: file descriptor, buffer with data, size

read(fd, buf, 100)

write(fd, buf, 100)

File system abstraction

int fd = open("foo")

read(fd, buf, 100)

write(fd, buf, 100)

close(fd)

OS abstractions

● Filesystem -- disk

● Process -- CPU

● Address space -- memory

● Interactive shell -- execute commands

Process Abstraction

● OS provides the process abstraction

○ Process: a running program

○ OS creates and manages processes and Loads

program executable (code, data) from disk to

memory

● Each process has the illusion of having the complete

CPU

● OS timeshares CPU between processes

● OS enables coordination between processes

Process Abstraction

● A unique identifier (PID)

● Memory image

○ Code & data (static)

○ Stack and heap (dynamic)

● CPU context: registers

○ Program counter

○ Stack pointer

● File descriptor table

○ Pointers to opened files and devices

Process Abstraction

● Allocates memory and creates memory image

○ Loads code, data from disk exe

○ Creates runtime stack, heap

● Opens basic files – STD IN, OUT, ERR

● Initializes CPU registers

○ PC points to first instruction

Interactive Shell

● Special program inside operating system

● Will take commands from user

● Interpret the command as filename

● Loads the filename as a process in memory

● Transfers the control to newly created process

Interactive Shell

● $ browser

Interactive Shell

● $ browser

$ |

Interactive Shell

Process related system calls

● fork()

● exec()

● exit()

Process related system calls

● exec(“filename”)

○ Makes a process execute a given executable

○ e.g. SHELL process makes a system call

■ exec(“browser”)

○ “SHELL” program will be replaced by “browser”

program in memory

Process related system calls

● fork() creates a new child process

○ e.g. SHELL process makes a fork() system call

Process related system calls

Process related system calls

OS APIs

So, should we rewrite programs for each OS?

● POSIX API: a standard set of system calls that an OS must

implement

● Programs written to the POSIX API can run on any POSIX

compliant OS

● Program language libraries hide the details of invoking system calls

● The printf function in the C library calls the write system call to write

to screen

● User programs usually do not need to worry about invoking system

calls

	Slide 1
	Class details
	Course Outline
	Slide 4
	Operating System (OS)
	Design Approach
	Operating System (OS)
	Operating System (OS)
	Operating System (OS)
	OS research
	Slide 11
	OS abstractions
	OS abstractions
	File system abstraction
	File system abstraction
	File system abstraction
	OS APIs
	OS APIs or System calls
	Creating Files
	Reading/Writing Files
	File system abstraction
	OS abstractions
	Process Abstraction
	Process Abstraction
	Process Abstraction
	Interactive Shell
	Interactive Shell
	Interactive Shell
	Interactive Shell
	Process related system calls
	Process related system calls
	Process related system calls
	Process related system calls
	Process related system calls
	OS APIs

