
 \CSL373/CSL633 Minor2 Exam 
Operating Systems 
Sem II, 2014­15 

Answer all 6 questions                                                                               Max. Marks: 34 
 
Name: 
 
GCL ID: 
 
Marks table: 
1. 
2. 
3. 
4.   a.            b.            c.          d. 
5. 
6. 
 

1. Give an example of a program where coarse­grained locking is likely to have better 
performance than fine­grained locking. [4] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Is it possible for the CPU utilization of your system to be 100% if all the threads in the 
system are involved in a deadlock? Explain. [4] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Can blocking locks be implemented for user­level threads? If no, why not? If yes, how? [6] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Consider the following function ‘foo()’ that reads and writes global variables ‘a’ and ‘b’ 
 
 
void foo(void) { 
  a = a + 1; 
  b = a + b; 
} 
 
 

a. If two threads execute foo() concurrently, what are all the possible final values of ‘a’ 
and ‘b’ (in terms of the initial values a0 and b0)? [3.5]. Warning: this may be a lengthy 
question; attempt in the end. 

HINT: Can you use the fact that addition is commutative and associative, to reduce the 
number of cases? What can the minimum final value of ‘a’, ‘b’? What can be the maximum 
final value of ‘a’, ‘b’? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Now consider the following function ‘foo_coarse()’ with coarse­grained locking using a global 
lock ‘lg’. Assume that ‘lg’ has been properly initialized. 
 
void foo_coarse(void) { 
    acquire(&lg); 
    a = a + 1; 
    b = a + b; 
    release(&lg); 
} 
 
b. If two threads execute foo_coarse() concurrently, what are all the possible final values of ‘a’ 
and ‘b’ (in terms of the initial values a0 and b0)?  [0.5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Now consider the following function ‘foo_fine()’ with fine­grained locking using two global 
locks ‘la’ and ‘lb’. Assume that ‘la’ and ‘lb’ have been initialized properly. 
 
void foo_fine(void) { 
    acquire(&la); 
    a = a + 1; 
    release(&la); 
    acquire(&lb); 
    b = a + b; 
    release(&lb); 
} 
 
c. If two threads execute foo_fine() concurrently, what are all the possible final values of ‘a’ 
and ‘b’ (in terms of the initial values a0 and b0)?  [1.5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Now consider the following function ‘foo_fine2()’ with fine­grained locking using two global 
locks ‘la’ and ‘lb’. Assume that ‘la’ and ‘lb’ have been initialized properly. 
 
void foo_fine(void) { 
    acquire(&la); 
    a = a + 1; 
    acquire(&lb); 
    b = a + b; 
    release(&la); 
    release(&lb); 
} 
 
d. If two threads execute foo_fine2() concurrently, what are all the possible final values of ‘a’ 
and ‘b’ (in terms of the initial values a0 and b0)?  [1.5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Consider the producer­consumer code below: 
 
char queue[MAX];  //global 
int head = 0, tail = 0; //global 
struct cv not_full, not_empty; 
struct lock qlock; 
 
void produce(char data) { 
  acquire(&qlock); 
  while ((head + 1) % MAX  ==  tail) { 
    wait(&not_full, &qlock); 
  } 
  queue[head] = data; 
  head = (head + 1) % MAX; 
  notify(&not_empty);   ← [CAN THIS STATEMENT BE MOVED AFTER ‘release(&qlock)’?] 
  release(&qlock); 
} 
 
char consume(void) { 
  acquire(&qlock); 
  while (tail == head) { 
    wait(&not_empty, &qlock); 
  } 
  e = queue[tail]; 
  tail = (tail + 1) % MAX; 
  notify(&not_full); 
  release(&qlock); 
  return e; 
} 
 
Can we move the notify(&not_full) condition after ‘release(&qlock)’? If yes, why? If no, what is 
the problem that can occur? Is it okay to do this under certain conditions? What is that 
condition? [6] 
 
 
Similarly, can we move notify(&not_empty) condition after ‘release(&qlock)’? If yes, why? If 
no, what is the problem that can occur? Is it okay to do this under certain conditions? What is 
that condition? [2] 
 
Please describe your answer clearly and precisely. For example, if you think that there could 
be a problem, describe the exact schedule that will cause that problem. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6. We have discussed how scheduling/ordering of thread computation can be achieved using 
semaphores, using the following example: 
 
semaphore_t Sa, Sb;//both Sa and Sb are initialized to 0 
 
Thread 1: 
 
….. 
a = compute_something(); 
V(Sa); 
…. 
 
 
 
Thread 2: 
…. 
b = compute_something(); 
V(Sb); 
…. 
 
 
Thread 3: 
…. 
P(Sa); 
P(Sb); 
c = function(a, b); 
…. 
 
 
 
For correctness we need to ensure that ‘c’ is computed only after ‘a’ and ‘b’ have been 
computed. Can we achieve this using condition variables and locks? If not, why not? If yes, 
write the code required to achieve these scheduling guarantees (using only condition 
variables and locks)? You are not allowed to use semaphores. [5] 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 


