CSL373/CSL633 Major Exam
Operating Systems
Sem Il, 2014-15
Answer all 11 questions (14 pages) Max. Marks: 62

For True/False questions, please provide a brief justification (1-2 sentences) for your answer.
No marks will be awarded for no/incorrect justification. We will penalize you if you provide
extraneous information not related to the question being asked.

1. If the disk is fully utilized (i.e., providing near-full disk bandwidth), does that imply that the
scheduler is doing a good job interleaving CPU-bound and 1/0-bound jobs? [4]

Not necessarily. This does not tell us anything about response time e.g. short
accesses vs long accesses. It also does not tell us anything about fairness.

Alternative:

No, we can come up with a biased scheduler which prefers 1/0-bound jobs, it will have
high disk utilization and interleaving will be poor between CPU-bound and I/O-bound
jobs.

0 to 1.5 Marks for partially correct
4 for correct

2. Persistent data can be stored either on the local disk of a machine or on the disk of a
remote machine (e.g., NFS). In one such system which stores persistent data on remote disk,
it also caches the file data in local memory, so that it does not need to go to the remote disk
on each read access.

a. Should the filesystem block size be smaller or larger than the block-size of a local
filesystem? (Possible answers: smaller, larger, same). Briefly explain. [3]

Assuming fast network, the most performance constrained resource is still the remote
disk and local memory. The only thing that has changed is that we have a larger cache
(local + remote). But the block size is largely uncorrelated with cache size. So correct
answer is: same.

3 marks for correct explanation and 0-1.5 for partial answer



b. The filesystem engineer varies the filesystem block size from 512B to 4MB, and notices
that her application performance first increases (with increasing block size) and then
decreases (with increasing block size). The application primarily performs reads on the
filesystem. Can you explain this behaviour (both increase and decrease)? What do you think
is the likely inflection point and why? (Hint: inflection point is the block size at which the
application performance was highest). Try and justify your answer by picking a realistic
example of the application and the system configuration. [6]

Increasing block size:
Pros:
e Better exploitation of spatial locality
e Better disk bandwidth utilization
Cons:
e Cache pollution potentially
e Too much network/disk bandwidth usage

Till a limit increasing block size provides advantage. After that, it hurts. A good value
would be application specific.

Example:
e Web server streaming HTML files ~ 4-16 kB
e Video streaming server ~ 512kB - 2MB
With a typical system config of modern hardware as discussed in calss.

Marks: 4(explanation) + 2(example)

c. Should the filesystem engineer implement a write-back cache or a write-through cache?
Can you think of a workload where write-through cache would perform better than a
write-back cache? Clearly state your assumptions and answer in 1-2 sentences. [4]

WB cache seems most natural. However WB cache requires consistency management
for multiple NFS clients.

Usually WB would perform better. WT could perform better if there are a lot of evictions
but even though the better performance would only be transient.



d. In your opinion, what should be a good crash-consistency semantics for this remote
filesystem? Justify your answer by considering tradeoffs between performance and
crash-consistency semantics. What support would you provide for the application such that it
can make assumptions against crash consistency? After stating your solution, clearly
enumerate the different scenarios (e.g., what crashes, when does it crash, how recovery
happens). [6]

For performance:
e sync at periodic interval (e.g. 30 sec)
e application should be able to force sync (e.g. fsync)
e Metadata consistency should be ensured using either ordered writes or
journaling/logging.

Scenarios:
Data:

e Crash before app calls fsync: all data lost

e Crash after fsync has returned: data persistent
Metadata:

e Crash before commit: transaction lost

e Crash after commit: FS consistent

Marks: 3+3

3. What is the problem if you run a database server as a user-process over a UNIX-like kernel
(e.g., Linux)? How can an exokernel design solve this problem? Your answer should be clear
and precise. [2 + 4].

Problems:
e Double eviction (os and app)
e Potentially two schedulers for CPU and disk

Exokernel provides hardware like view. All policy can be implemented inside the application,
specific to it. It will prevent double eviction (explain).



4. In which of these situations can an intruder be able to compromise the security of the
system. Assume that sensitive (private) information lives in the registers, memory, and the
disk of the system. A security compromise means that the intruder can gain access to this
sensitive information.

a. Intruder has access to the raw disk device storing the passwords [1]
Easy. A simple scan of disk contents (bypassing OS) will expose the password.

b. Intruder has access to the power supply of a system and has a user (non-root) account on
the machine. Access to power supply means that she can turn the machine on/off (through
power supply) at any time, and any number of times. Assume that the filesystem implements
an asynchronous crash consistency model, whereby the filesystem data is flushed to disk only
at periodic intervals. You can also assume a specific filesystem (e.g., ext3) while answering
this question. You may also define your own simple filesystem to answer this question. Your
answer may depend on the choice of filesystem. Notice that the intruder may have a user
account, but could compromise security by getting access to sensitive data of another
user/root user. [6]

If using ext3, no attack possible. The power failure will do nothing but to keep the FS in
consistent state.
(expect some more explanation)

5. True/False: An ext3 transaction can be made to contain an arbitrarily large number of
operations? If true, explain why. If false, name at least three different criteria on which the
maximum size of an ext3 transaction would depend [4]

False. (0.5 marks)

Max size depends upon:

1. Disk size (for correctness)

2. Memory size (for performance)

3. Crash consistency guarantees (for user experience)
(1- 2 marks, 2 & 3- 1.5 marks)

6. Why do we need separate “close” and “commit” operations for an ext3 log? Briefly explain
in 1-3 sentences. Incomplete answers will not receive marks. [4]

To gracefully allow ongoing operations to finish before committing the current
transactions.
All the new operations belong to the next transaction (after close).



7. Explain in one sentence, why RCU is better than reader-writer locks? [2]

Allows reader to execute at cache speed
Does not introduce cacheline bouncing.

8. Explain in 1-2 sentences why transactional memory (or transactions in general) are often
considered better than locks? [2]

No deadlock.

No loss of modularity.

No headache associated with fine grain locking.

9. During receive livelock, the system may behave as follows (as also discussed during
lecture):

output rate

slope1 slope2

—» input rate
What determines slope of line 1 (slope1)? What determines slope of line 2 (slope2)? [5]
Slope 1: (1.5 marks)
45 degree or 1 always
Slope 2: (3.5 marks)

Depends on the time it takes to handle interrupt. Higher interrupt handling time w.r.t.
output processing time => steeper slope



10. The following code attempts to implement an atomic stack. Does it work? If yes, give a
short intuitive correctness argument why it works. If no, state how it is vulnerable to race
conditions. Assume the stack is initialized correctly. [6]

struct stack {
struct lock head_lock; // used to lock head

struct elem *head; / stack top
lock_t count_lock; /I used to lock count
int count;

I3

struct elem {
struct elem *next;

/* other data fields. */

I3

void push(struct stack *s, struct elem *e) {
acquire(&s->head_lock);
e->next = s->head;
s->head = e;
release(&s->head_lock);

/I'V operation
acquire(&s->count_lock);
s->count++;
release(&s->count_lock);

}

struct elem *pop(struct stack *s) {
struct elem *e;
int acquired;

I/l P operation
for (acquired = 0; lacquired; ) {

acquire(&s->count_lock);
if (s->count) {
s->count--;
acquired = 1;
}
release(&s->count_lock);
}
acquire(&s->head_lock);
e = s->head;
s->head = e->next;
release(&s->head_lock);
return e;



There is no race condition.

The count acts as semaphore. Look at the comments in the code on last page.
Even if interleaving takes place after the P/V operation the count will be consistent.

Marks:
0 if no explanation or wrong answer
6 for correct answer and explanation.

11. True / False : Increasing the size of the buffer cache should always reduce the (average)
number of disk accesses. Assume everything else (e.g., workload, hardware, OS logic, etc.) is
kept same, only buffer cache size is increased. [3]

True

False (is also valid):
e Belady’s anomaly
e Cache replacement policy can be arbitrary
e Increasing buffer cache decreases swap cache, so VM disk writes to swap space
can increase.

True (with no explanation) full marks
False (with any of the correct explanation) full marks
False (with no explanation) 0 marks



