
CSL373/CSL633 Major Exam 
Operating Systems 
Sem II, 2014­15 

Answer all 11 questions (14 pages)                                                              Max. Marks: 62 
 
 

1.   

2.   

3.   

4.   

5.   

6.   

7.   

8.   

9.   

10.   

11.   

  
 
For ​True/False ​questions,​ ​please provide a brief justification (1­2 sentences) for your answer. 
No marks will be awarded for no/incorrect justification. We will penalize you if you provide 
extraneous information not related to the question being asked. 
 
1. If the disk is fully utilized (i.e., providing near­full disk bandwidth), does that imply that the 
scheduler is doing a good job interleaving CPU­bound and I/O­bound jobs? [4] 
 
 
 
 
 
 
 
 
 
 
 

 



2. Persistent data can be stored either on the local disk of a machine or on the disk of a 
remote machine (e.g., NFS). In one such system which stores persistent data on remote disk, 
it also caches the file data in local memory, so that it does not need to go to the remote disk 
on each read access. 
 
a. Should the filesystem block size be smaller or larger than the block­size of a local 
filesystem? (Possible answers: smaller, larger, same). Briefly explain. [3] 
 
 
 
 
 
 
 
 
 
 
 
b. The filesystem engineer varies the filesystem block size from 512B to 4MB, and notices 
that her application performance first increases (with increasing block size) and then 
decreases (with increasing block size). The application primarily performs reads on the 
filesystem. Can you explain this behaviour (both increase and decrease)? What do you think 
is the likely inflection point and why? (Hint: inflection point is the block size at which the 
application performance was highest). Try and justify your answer by picking a realistic 
example of the application and the system configuration. [6] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c. Should the filesystem engineer implement a write­back cache or a write­through cache? 
Can you think of a workload where write­through cache would perform better than a 
write­back cache? Clearly state your assumptions and answer in 1­2 sentences. [4] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d. In your opinion, what should be a good crash­consistency semantics for this remote 
filesystem? Justify your answer by considering tradeoffs between performance and 
crash­consistency semantics. What support would you provide for the application such that it 
can make assumptions against crash consistency? After stating your solution, clearly 
enumerate the different scenarios (e.g., what crashes, when does it crash, how recovery 
happens). [6] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. What is the problem if you run a database server as a user­process over a UNIX­like kernel 
(e.g., Linux)? How can an exokernel design solve this problem? Your answer should be clear 
and precise. [2 + 4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. In which of these situations can an intruder be able to compromise the security of the 
system. Assume that sensitive (private) information lives in the registers, memory, and the 
disk of the system. A security compromise means that the intruder can gain access to this 
sensitive information. 
 
a. Intruder has access to the raw disk device storing the passwords [1] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



b. Intruder has access to the power supply of a system and has a user (non­root) account on 
the machine. Access to power supply means that she can turn the machine on/off (through 
power supply) at any time, and any number of times. Assume that the filesystem implements 
an asynchronous crash consistency model, whereby the filesystem data is flushed to disk only 
at periodic intervals. You can also assume a specific filesystem (e.g., ext3) while answering 
this question. You may also define your own simple filesystem to answer this question. Your 
answer may depend on the choice of filesystem. Notice that the intruder already has a user 
account, but could compromise security if she could get access to sensitive data of another 
user/root user. [6] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



5. True/False: An ext3 transaction can be made to contain an arbitrarily large number of 
operations? If true, explain why. If false, name at least three different criteria on which the 
maximum size of an ext3 transaction would depend [4] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Why do we need separate “close” and “commit” operations for an ext3 log? Briefly explain 
in 1­3 sentences. Incomplete answers will not receive marks. [4] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



7. Explain in one sentence, why RCU is better than reader­writer locks? [2] 
 
 
 
 
 
 
 
 
 
 
 
8. Explain in 1­2 sentences why transactional memory (or transactions in general) are often 
considered better than locks? [2] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



9. During receive livelock, the system may behave as follows (as also discussed during 
lecture): 
 

 
What determines slope of line 1 (slope1)? What determines slope of line 2 (slope2)? [5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



10. The following code attempts to implement an atomic stack. Does it work? If yes, give a 
short intuitive correctness argument why it works. If no, state how it is vulnerable to race 
conditions. Assume the stack is initialized correctly. [6] 
 
struct stack { 
    struct lock head_lock;   // used to lock head 
    struct elem *head;         // stack top 
    lock_t count_lock;         // used to lock count 
    int count; 
}; 
struct elem { 
    struct elem *next; 
     /* other data fields. */ 
}; 
void push(struct stack *s, struct elem *e) { 
    acquire(&s­>head_lock); 
    e­>next = s­>head; 
    s­>head = e; 
    release(&s­>head_lock); 
 
    acquire(&s­>count_lock); 
    s­>count++; 
    release(&s­>count_lock); 
} 
struct elem *pop(struct stack *s) { 
    struct elem *e; 
    int acquired; 
 
    for (acquired = 0; !acquired; ) { 
        acquire(&s­>count_lock); 
        if (s­>count) { 
              s­>count­­; 
              acquired = 1; 
        } 
        release(&s­>count_lock); 
    } 
    acquire(&s­>head_lock); 
    e = s­>head; 
    s­>head = e­>next; 
    release(&s­>head_lock); 
    return e; 
} 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



11. True / False : Increasing the size of the buffer cache should always reduce the (average) 
number of disk accesses. Assume everything else (e.g., workload, hardware, OS logic, etc.) is 
kept same, only buffer cache size is increased. [3] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


