CSL373/CSL633 Major Exam Solutions
Operating Systems
Sem ll, 201213
May 6, 2013
Answer all 8 questions Max. Marks: 56

1. True or False. Give reasons and/or brief explanation. No marks for incomplete/wrong
explanation.

a. On xv6, the walkpgdir() function gets executed on every memory access by the user process.
[1 mark]

False. For every memory access, the hardware walks the page table (or consults the TLB
cache). walkpgdir() is only used by the kernel to simulate the same behaviour while
adding/removing pages to a user process address space.

b. For most desktop applications, using huge pages (e.g., 2GB pages) will result in better overall
system performance. [1 mark]

False. Huge pages are only useful if applications have large contiguous memory footprints. This
is not true for most desktop applications.

c. An in-memory filesystem, RAMFS, as discussed in the xsyncfs paper, will always have better
performance than any on-disk filesystem for a disk-intensive benchmark. [1 mark]

True. Each RAMFS write operation just writes to memory. On-disk filesystems write to disk. Disk
I/0O is orders of magnitude slower than memory access.

d. In a ext3 journaling file system, a transaction can be closed at any time. [2.5 marks]

True. A transaction can be closed at any time. Subsequent write operations will belong to a new
transaction. Operations that had already started will belong to the previous transaction. Thus, the
previous transaction will have to wait for all these operations to complete before installing it to
disk.

Hence, a transaction can be closed at any time, but it must wait for ongoing write operations to
complete before it can install it to disk.



e. In xv6, a file create can fail even if the disk is not full. [2 marks]
True. This can happen if:

i. The inode number limit is reached.
ii. A filename with the same name already exists, or any other such reason.

Full marks if any of these is mentioned.

f. On a FAT32 filesystem, corruption of one disk block could potentially lead to the loss of
complete file data. [2 marks]

False. By storing redundant copies of the File Allocation Table (FAT), we guard against loosing
data due to single block corruption. If redundant copies are not stored, file data could be lost
because FAT uses linked files.

g. The best possible filesystem layout for a read-only filesystem (which is written only once in the
beginning) is contiguous allocation. Explain why or why not. [2.5 marks]

True. Because this is write-once filesystem, there will be no dynamic file creations and no file
growth. A contiguous filesystem provides the best possible sequential and random 1/0O
performance. The demerits of contiguous file system do not exist, as it is write-once.

h. When using a write-through buffer cache, one does not need to worry about the order of disk
writes (from a filesystem consistency perspective across power reboots). Explain why or why
not. [2 marks]

False. The order of disk writes is important to ensure that filesystem invariants are maintained
across power reboots. For example, an invariant could be that there should be no dangling
pointers. Further meta-data writes to the disk device should include write barriers to avoid
unexpected behaviour due to disk controller caching.

i. The “First Fit” algorithm is used when allocating pages to processes. [1 mark]

False. The first fit algorithm is used for allocating variable-sized memory (e.g., for malloc). It is
not used for fixed-size pages.



2. In xv6, the kernel stack (kstack) of a process is limited by KSTACKSIZE (4096 bytes). List at
least three invariants that the kernel maintains to ensure that kstack never overflows. i.e., if one
of those invariants is violated, kstack could potentially overflow. [5 marks]

a. There is a limit on the number of nested external interrupts. On xv6, this limitis 1, i.e., the
interrupt flag is cleared while executing an external interrupt handler.

b. There is a limit on the number of nested external exceptions. for example, a page fault
exception should not occur while executing a page fault handler, else we could potentially have
infinite nesting.

c. Stack variables and arrays are avoided. Instead, memory is heap allocated, wherever
required in the kernel.

Deduct 1.5 marks if any of these answers not given.

3. The L-1 cache of a processor could either be physically indexed (i.e., indexed using physical
addresses), or virtually indexed (i.e., indexed using virtual addresses). List the primary
advantage of using a virtually addressed L1 cache. List the primary advantage of a physically
addressed L1 cache. [3 marks]

The primary advantage of a virtually addressed L1 cache is that there is no need to go through
paging hardware while accessing L1. This improves L1 access latency.

The primary advantage of physically addressed L1 cache is that there is no need to flush the L1
cache across process context switches.



4. Professor X really liked the xsyncfs paper, but found it a bit “incomplete”. He suggests that
external synchrony should be implemented over a cluster of machines, to achieve its real
potential. He is developing a new filesystem called “networked externally synchronous file
system”, or nxsyncfs. In nxsyncfs, an output is not considered external, until it leaves to the
external network. In other words, all communication between two hosts within the cluster is
considered internal. Assuming that a cluster of machines can only be observed through the
external network interface (assume there is no console access to these machines), answer the
following questions:

i. What will be your filesystem sync policy on nxsyncfs? i.e., when will you insert fsync calls?
Does nxsyncfs give more optimization opportunities over xsyncfs? Briefly explain. [2 marks]

Now, disk buffers need to be flushed to disk only on “external output”. Hence, if there is an output
on an external network interface by any machine, it will check if there is a causal dependency
between this external output and a preceding write to disk. If so, it will call fsync on the host on
which this preceding write was executed.

Yes, this provides further optimization opportunities, as now larger group commits are possible.
A commit only needs to be performed on a write to the external network. In contrast, if xsyncfs
was used, a commit would have to be performed on every communication between two hosts in
the cluster (assuming dirty buffers existed).

ii. What kind of data structures and mechanisms will you need to implement for nxsyncfs?
Assume that all xsyncfs mechanisms are already in place. Only emphasize the extra structures
and mechanisms that you will need to add over xsyncfs, to take advantage of nxsyncfs
semantics? [3 marks]

At each host:

1. Maintain information on whether my buffers are dirty or not. Also maintain information on
whether a host which had dirty buffers sent a causally following communication to me or not.
Maintain a list of such hosts as “dirty hosts”.

2. On a network output, check to see if the destination host is internal or external. If it is external,
call fsync() locally (if my buffers are dirty) and instruct all dirty hosts to also call fsync() [this may
involve a request/response network mechanism]. A network packet should be sent to external
network only after fsync() is called on all such hosts.

3. If the network output is internal and the network output follows a causally preceding disk write,
then add this host to the list of dirty hosts in the destination.



iii. Give an example of an application that will show significant improvements with nxsyncfs over
xsyncfs. i.e., the performance of the application should significantly improve if nxsyncfs is used
in place of xsyncfs. [3 marks]

Any benchmark which involves a large amount of disk activity across multiple hosts, and a large
amount of internal network activity and relatively smaller amount of external network activity.
Some examples:

1. Web application server backed by database and file servers. There is a lot of communication
between the application server, database server, and file server, but a group commit will happen

only when an external packe to the client is sent.

2. Data analytics or scientific applications processing a large amount of disk data.



5. Producer-consumer with semaphores

Consider the following functions, produce(item), and consume() for a shared queue, shared
between multiple producers and multiple consumers. As discussed in class, semaphores are
used to synchronize access to this shared queue.

void produce (item):
sema_down(mutex);
sema_down(holes);
insert_item(item, buffer);
sema_up(items);
sema_up(mutex);

item consume(void):
sema_down(mutex);
sema_down(items);
item = remove_item(buffer);
sema_up(holes);
sema_up(mutex);

In this code, the semaphore “mutex” is used for mutual exclusion, semaphore “holes” is used to
count the number of empty slots in the buffer, and semaphore “items” is used to count the
number of items in the buffer.

a. What should be the initial values of the semaphores mutex, holes, and items? Assume that
the buffer size is N. [1.5 marks]

mutex: 1
holes: N
items: 0

Assuming the buffer is initially empty, it has N holes and 0 items. mutex is initialized to 1, so it
acts as a lock.



b. Look at this code closely and answer if this code is correct. If you think it is correct, briefly
explain the invariants that prove it correct. If you think it is incorrect, explain why and fix it so that
it becomes correct (with brief explanation as before). [4.5 marks]

This code is incorrect, it has a deadlock.

Consider the following sequence (assume 1 producer, 1 consumer):
Intially, holes = N, items = 0

1. consumer does sema_down(mutex)

2. consumer does sema_down(items) and blocks.

3. producer does sema_down(mutex) and blocks.

Deadlock!

Correct code:

void produce (item):
sema_down(holes);
sema_down(mutex);
insert_item(item, buffer);
sema_up(mutex);
sema_up(items);

item consume(void):
sema_down(items);
sema_down(mutex);
item = remove_item(buffer);
sema_up(mutex);
sema_up(holes);



5’. Consider the ext3 journaling filesystem. Answer the following questions:
a. How does ext3 ensure a low runtime overhead, even though a disk write results in at least two
separate disk writes (one to log, and one to FS tree). [1.5 marks]

1. Writes to log are coalesced by using compound transactions. Writes become sequential.
2. Application of log to FS tree is done asynchronously

b. Consider a situation where filesystem compound transaction X has started committing. What
happens to the transactions (or atomic operations) that are already ongoing? Do the updates of
those operations get reflected in the next compound transaction (say transaction Y), or do they
get reflected in the previous transaction (transaction X)? [2 marks]

The updates of these operations are reflected in transaction X. Committing can start, i.e.,
updates can be written to log but a final commit record (or an update of head/tail of log) will only
happen after all ongoing operations (which started before X closed) have completed.

c. What happens to the operations that were started after transaction X started committing but
before the commit record was written? Do the updates by these operations get reflected in the
previous transaction (transaction X) or the next transaction (transaction Y)? [2 marks]

The updates of these operations are reflected in transaction Y. If a commit has started, then the
previous transaction has been closed. To limit the size of transactions, we do not allow
subsequent operations to go to the previous transaction. These operations are made a part of
transaction Y.

d. While transaction X is committing (i.e., commit record has not yet been written), what
happens if some operation in transaction Y writes to a disk block which is also a part of
transaction X? How does ext3 ensure correct behaviour? [3.5 marks]

A copy of that block should be made by transaction Y in memory, and operations by transaction
Y should be done on this new copy. The old copy (in memory) can be used for committing
transaction X. Once transaction X has finished comitting (commit record is written), the old copy
should be discarded and the new copy (made by transaction Y) should be made the master

copy.



6. Implement reader-writer locks using spinlocks and sleep/wakeup. You must not use any other
synchronization mechanism. You should also not assume specific architecture instructions like
xchg, etc. Your implementation should be efficient.

No scheduling requirements: The scheduling of read/write locks can be arbitrary, i.e., if a reader
(potentially many) and a writer are both waiting for a lock, any one can win. Also, if a lock is being
held in read mode, other readers may be allowed to acquire it, even if a writer is waiting.

You have to implement: struct rwlock, read_acquire(), read_release(), write_acquire(),
write_release() functions.

You are allowed to use: spinlock_acquire(), spinlock_release(), sleep(), wakeup(). [4 marks]

void read_acquire(struct rwlock *I) {

spinlock _acquire(&l->slock);

while (I->state == WRITE_LOCKED) {
sleep(l, &l->slock);

}

[->locked = READ_LOCKED;

[->reader_count++;

wakeup(l);

spinlock_release(&l->slock);

}

void read_release(struct rwlock *I) {
spinlock_acquire(&l->slock);
[->reader_count--;
if (I->reader_count == 0) {

[->state = UNLOCKED;

}
wakeup(l);
spinlock_release(&l->slock);



void write_acquire(struct rwlock *I) {
spinlock_acquire(&l->slock);
while (I->state != UNLOCKED) {

sleep(l, &l->slock);

}
[->locked = WRITE_LOCKED;
spinlock_release(&l->slock);

}

void write_release(struct rwlock *I) {
spinlock_acquire(&l->slock);
[->state = UNLOCKED;
wakeup(l);
spinlock_release(&l->slock);

}



7. Security: Explain how submit-pintos script is able to both write to my (sbansal’s) home as well
as to your (the person who is submitting) home. [3 marks]

Using the setuid bit in the access control bits of the submit-pintos script.
The setuid script sets the euid to sbansal, and uid to the invoker.

The script is capable of switching between its euid and uid through the seteuid() system call (or
equivalent) to achieve this functionality.

8. How does an OS detect Thrashing? [1.5 marks]. How does it deal with it? [1.5 marks]

Thrashing can be detected by measuring the page fault frequency. A high page fault frequency
(due to swapping) implies thrashing. It can be avoided through better scheduling. For example, a
set of processes whose working set is likely to fit in the available RAM is run together for an
extended time (say 1-5 seconds), and then swapped out together to allow another group of
processes to get swapped in. This reduces the rate of page faults, and ensures faster overall
progress.



