CSL373/CSL633 Major Exam
Operating Systems
Sem ll, 201213
May 6, 2013
Answer all 8 questions Max. Marks: 56

1. True or False. Give reasons and/or brief explanation. No marks for incomplete/wrong
explanation.

a. On xv6, the walkpgdir() function gets executed on every memory access by the user process.
[1 mark]

b. For most desktop applications, using huge pages (e.g., 2GB pages) will result in better overall
system performance. [1 mark]

c. An in-memory filesystem, RAMFS, as discussed in the xsyncfs paper, will always have better
performance than any on-disk filesystem for a disk-intensive benchmark. [1 mark]



d. In a ext3 journaling file system, a transaction can be closed at any time. [2.5 marks]

e. In xv6, a file create can fail even if the disk is not full. [2 marks]



f. On a FAT32 filesystem, corruption of one disk block could potentially lead to the loss of
complete file data. [2 marks]

g. The best possible filesystem layout for a read-only filesystem (which is written only once in the
beginning) is contiguous allocation. Explain why or why not. [2.5 marks]



h. When using a write-through buffer cache, one does not need to worry about the order of disk
writes (from a filesystem consistency perspective across power reboots). Explain why or why
not. [2 marks]

i. The “First Fit” algorithm is used when allocating pages to processes. [1 mark]



2. In xv6, the kernel stack (kstack) of a process is limited by KSTACKSIZE (4096 bytes). List at
least three invariants that the kernel maintains to ensure that kstack never overflows. i.e., if one
of those invariants is violated, kstack could potentially overflow. [5 marks]



3. The L-1 cache of a processor could either be physically indexed (i.e., indexed using physical
addresses), or virtually indexed (i.e., indexed using virtual addresses). List the primary
advantage of using a virtually addressed L1 cache. List the primary advantage of a physically
addressed L1 cache. [3 marks]



4. Professor X really liked the xsyncfs paper, but found it a bit “incomplete”. He suggests that
external synchrony should be implemented over a cluster of machines, to achieve its real
potential. He is developing a new filesystem called “networked externally synchronous file
system”, or nxsyncfs. In nxsyncfs, an output is not considered external, until it leaves to the
external network. In other words, all communication between two hosts within the cluster is
considered internal. Assuming that a cluster of machines can only be observed through the
external network interface (assume there is no console access to these machines), answer the
following questions:

i. What will be your filesystem sync policy on nxsyncfs? i.e., when will you insert fsync calls?
Does nxsyncfs give more optimization opportunities over xsyncfs? Briefly explain. [2 marks]



ii. What kind of data structures and mechanisms will you need to implement for nxsyncfs?
Assume that all xsyncfs mechanisms are already in place. Only emphasize the extra structures
and mechanisms that you will need to add over xsyncfs, to take advantage of nxsyncfs
semantics? [3 marks]



iii. Give an example of an application that will show significant improvements with nxsyncfs over
xsyncfs. i.e., the performance of the application should significantly improve if nxsyncfs is used
in place of xsyncfs. [3 marks]



5. Producer-consumer with semaphores

Consider the following functions, produce(item), and consume() for a shared queue, shared
between multiple producers and multiple consumers. As discussed in class, semaphores are
used to synchronize access to this shared queue.

void produce (item):
sema_down(mutex);
sema_down(holes);
insert_item(item, buffer);
sema_up(items);
sema_up(mutex);

item consume(void):
sema_down(mutex);
sema_down(items);
item = remove_item(buffer);
sema_up(holes);
sema_up(mutex);

In this code, the semaphore “mutex” is used for mutual exclusion, semaphore “holes” is used to
count the number of empty slots in the buffer, and semaphore “items” is used to count the
number of items in the buffer.

a. What should be the initial values of the semaphores mutex, holes, and items? Assume that
the buffer size is N. [1.5 marks]



b. Look at this code closely and answer if this code is correct. If you think it is correct, briefly
explain the invariants that prove it correct. If you think it is incorrect, explain why and fix it so that
it becomes correct (with brief explanation as before). [4.5 marks]



6. Consider the ext3 journaling filesystem. Answer the following questions:
a. How does ext3 ensure a low runtime overhead, even though a disk write results in at least two
separate disk writes (one to log, and one to FS tree). [1.5 marks]

b. Consider a situation where filesystem compound transaction X has started committing. What
happens to the transactions (or atomic operations) that are already ongoing? Do the updates of
those operations get reflected in the next compound transaction (say transaction Y), or do they
get reflected in the previous transaction (transaction X)? [2 marks]

c. What happens to the operations that were started after transaction X started committing but
before the commit record was written? Do the updates by these operations get reflected in the
previous transaction (transaction X) or the next transaction (transaction Y)? [2 marks]



d. While transaction X is committing (i.e., commit record has not yet been written), what
happens if some operation in transaction Y writes to a disk block which is also a part of
transaction X? How does ext3 ensure correct behaviour? [3.5 marks]



7. Implement reader-writer locks using spinlocks and sleep/wakeup. You must not use any other
synchronization mechanism. You should also not assume specific architecture instructions like
xchg, etc. Your implementation should be efficient.

No scheduling requirements: The scheduling of read/write locks can be arbitrary, i.e., if a reader
(potentially many) and a writer are both waiting for a lock, any one can win. Also, if a lock is being

held in read mode, other readers may be allowed to acquire it, even if a writer is waiting.

You have to implement: struct rwlock, read_acquire(), read_release(), write_acquire(),
write_release() functions.

You are allowed to use: spinlock_acquire(), spinlock_release(), sleep(), wakeup(). [4 marks]






8. Security: Explain how submit-pintos script is able to both write to my (sbansal’s) home as well
as to your (the person who is submitting) home. [3 marks]



9. How does an OS detect Thrashing? [1.5 marks]. How does it deal with it? [1.5 marks]



