Lecture 18: Unix Fast File System

More UNIX files/inodes/directories

 How does system convert a name to an inode?
— There is a routine called namei that does it
 How are symbolic links implemented?
— A symbolic link is a file containing a filename
— Macro substitution done by OS during operation

 What happens on ls, cd, cat? What happens on ‘Is
—F’?
 What about rm? Does it always delete a file?
— NO. it decrements the reference count. If zero, free up
file
* Will rm work for directories?
— NO. because directory has a reference to itself (.)
— Use a different command

Where are inodes stored?

* In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders

— Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

— Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unigue number,
called an “inumber”)

Where are inodes stored?

e Later versions of UNIX moved the header
information to be closer to the data blocks

— Often, inode for file stored in same “cylinder group” as
parent directory of the file (makes an Is of that
directory run fast).

— Pros:

 UNIX BSD 4.2 puts a portion of the file header array on each
cylinder. For small directories, can fit all data, file headers, etc
in same cylinder=>no seeks!

* File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time

» Reliability: whatever happens to the disk, you can find many
of the files (even if directories disconnected)

— Part of the Fast File System (FFS)

* General optimization to avoid seeks

In-Memory File System Structures

directory structure
open (file name)
directory structure it ortrol black
user space kernel memory secondary storage

* Open system call:
— Resolves file name, finds file control block (inode)

— Makes entries in per-process and system-wide tables
— Returns index (called “file handle”) in open-file table

N (1T
ol
’_' | / data blocks
read (index) "--\l:|
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage

* Read/write system calls:
— Use file handle to locate inode
— Perform appropriate reads or writes

File System Caching

* Key ldea: Exploit locality by caching data in memory
— Name translations: Mapping from paths—inodes
— Disk blocks: Mapping from block address—disk content

e Buffer Cache: Memory used to cache kernel resources, including disk blocks and
name translations
— Can contain “dirty” blocks (blocks yet on disk)

* Replacement policy? LRU
— Can afford overhead of timestamps for each disk block

— Advantages:
* Works very well for name translation

* Works well in general as long as memory is big enough to accommodate a host’s working set of
files.

— Disadvantages:

* Fails when some application scans through file system, thereby flushing the cache with data
used only once
* Example: find . -exec grep foo {} \;

 Other Replacement Policies?
— Some systems allow applications to request other policies

— Example, ‘Use Once’:
* File system can discard blocks as soon as they are used

File System Caching (con’t)

e Cache Size: How much memory should the OS
allocate to the buffer cache vs virtual memory?

— Too much memory to the file system cache = won’t be
able to run many applications at once

— Too little memory to file system cache = many
applications may run slowly (disk caching not effective)

— Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced

 Read Ahead Prefetching: fetch sequential blocks early

— Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

— Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications
— How much to prefetch?
* Too many imposes delays on requests by other applications

* Too few causes many seeks (and rotational delays) among
concurrent file requests

File System Caching (con’t)

* Delayed Writes: Writes to files not immediately sent
out to disk

— Instead, write () copies data from user space buffer to
kernel buffer (in cache)

* Enabled by presence of buffer cache: can leave written file
blocks in cache for a while

* If some other application tries to read data before written to disk,
file system will read from cache

— Flushed to disk periodically (e.g. in UNIX, every 30 sec)

— Advantages:
* Disk scheduler can efficiently order lots of requests
. PIiSk allocation algorithm can be run with correct size value for a
ile
* Some files need never get written to disk! (e..g temporary
scratch files written /tmp often don’t exist for 30 sec)

— Disadvantages
* What if system crashes before file has been written out?

* Worse yet, what if system crashes before a directory file has
been written out? (lose pointer to inode!)

How to make file system durable?

Disk blocks contain Reed-Solomon error correcting codes (ECC)
to deal with small defects in disk drive
— Can allow recovery of data from small media defects

Make sure writes survive in short term

— Either abandon delayed writes or

— use special, battery-backed RAM (called non-volatile RAM or NVRAM)
for dirty blocks in buffer cache.

Make sure that data survives in long term

— Need to replicate! More than one copy of data!

— Important element: independence of failure
* Could put copies on one disk, but if disk head fails...
* Could put copies on different disks, but if server fails...
* Could put copies on different servers, but if building is struck by lightning....
* Could put copies on servers in different continents...

RAID: Redundant Arrays of Inexpensive Disks

Log Structured and Journaled File Systems

» Better reliability through use of log
— All changes are treated as transactions

— A transaction is committed once it is written to the log

* Data forced to disk for reliability

* Process can be accelerated with NVRAM
— Although File system may not be updated immediately, data preserved in the log
* Difference between “Log Structured” and “Journaled”
— In a Log Structured filesystem, data stays in log form

— In aJournaled filesystem, Log used for recovery

* ForJournaled system:

— Log used to asynchronously update filesystem

* Log entries removed after used

— After crash:

* Remaining transactions in the log performed (“Redo”)

* Modifications done in way that can survive crashes
 Examples of Journaled File Systems:
— Ext3 (Linux), XFS (Unix), etc.

Superblock

* When write a file, may need to allocate more
inodes and disk blocks. The superblock keeps
track of this data to help this process

* Superblock:

— Size of file system

— Number of free blocks in the file system

— List of free blocks available in the file system

— Index of next free block in free block list

— Size of inode list

— Number of free inodes in the file system

— A cache of free inodes

— The index of the next free inode in inode cache
* Superblock cached in memory, periodically

flushed to disk. Also, replicated on disk for fault
tolerance

When OS wants to allocate an inode

 First look in inode cache
* |node cache = stack of free inodes
* |[ndex = top of stack

 When stack empty, search “inode list” for free inodes
and fill up stack in superblock

To free an inode
e Putin superblock’s inode cache if there is room

* |f not, don’t do anything much. Only check against the
number where OS stopped looking for inodes the last
time it filled the cache. Make this number the
minimum of the freed inode number and the number
already there

List of free disk blocks

Superblock

When OS wants to allocate a disk block

* Check the superblock’s block of free disk blocks.

* |f there are at least two numbers, grab the one at

the top and decrement the index of the next free
block

* If there is only one number left, it contains the
index of the next block in the disk block
sequence. Copy this disk block into superblock’s

free disk block list, and use it as the free disk
block

When OS wants to free a disk block

 |f there is room in the superblock’s disk block,
oush it on there.

* |f not, write superblock’s disk block into free
olock, then put index of newly free disk block
in as first number in superblock’s disk block

Why cache for inodes, and list for disk
blocks

Kernel can determine whether inode is free or not just
by looking at it. But, cannot with disk block —any
pattern is OK for disk blocks

Easy to store lots of free disk block numbers in one disk
block. But, inodes aren’t large enough to store lots of
inode numbers

Users consume disk blocks faster than inodes. So,
pauses to search for inodes aren’t as bad as searching
for disk blocks would be

Inodes are small enough to read lots in a single disk
operation. So, scanning lists of inodes is not so bad

Synchronization: Reads and Writes

* Read execute concurrently, read should either
observe the entire write or none of the write.

e Reads can execute concurrently with no
atomicity constraints.

Synchronization: How to implement

Use reader-writer locks for each open file

read locks:

— Acquire blocks until no other process has a write lock,
then increments read lock count and returns.

— Release decrements read lock count

write_locks:

— Acquire blocks until no other process has write or
read lock, then sets write lock flag and returns

— Release clears write lock flag

Obtain read and write locks inside the kernel’s
system call handler

File locks are based on inode instead of filename.
Why?

Synchronization: Create, Open, Close,
Delete
* |f multiple processes have file open, and a

process calls delete on that file, all processes
must close the file before it is actually deleted.

Implementing Synchronization: Global
File Table

* Have a global file table in addition to local file
tables

* Global File Table: indexed by some global file id
(e.g., inode index). Each entry has a reader/writer
lock, a count of number of processes that have
file open, and a bit that says whether or not to
delete the file when the last process that has file
open closes it. May have other data for other
functionality.

* Local File Table: Indexed by open file id for that
process. Has a pointer to the current position in
the open file to start reading/writing

Sources of inefficiency: Wasted space
and Wasted time

* Wasted time (basically due to scattering)
— Inodes separated from files

— Inodes in same directory scattered around in
inode space

— Disk blocks of one file scattered around

* Wasted space

— Internal fragmentation due to block size

Wasted Time

* Intraditional UNIX, block size = sector size

* When they went from 3BSD to 4.0BSD, they
doubled the disk block size. This more than
doubled the disk performance. Two factors:

— Each block fetched twice as much data so amortized
seek cost

— File blocks were bigger so more files fit into direct
section of the inode index

* But still pretty bad. When file system first
created, got transfer rates of up to 175 KBps.
After a few weeks, deteriorated down to 30KBps.
What is worse is only about 4% of max disk
throughput. So, obvious fix is to make the block
size even bigger

Wasted Space

* Problem is bad, because most files are small.

Space Used (M)

775.2 0.0 Data only, no separation between files
828,7 6.9 Data+inodes, 512 byte block

866.5 11.8 Data+inodes, 1024 byte block

948.5 22.4 Data+inodes, 2048 byte block

1128.3 45.6 Data+inodes, 4096 byte block

Cylinder Groups (BSD 4.2)

Cylinder group=set of adjacent cylinders
A filesystem consists of a set of cylinder blocks

Each cylinder group has
— A redundant copy of the super block

— Space for inodes

* Default Policy: Allocate 1 inode per 2048 bytes of space in
cylinder group

— Bitmap describing available blocks in the cylinder
group

Basic Idea: Put related info together in the same

cylinder group, and unrelated info apart in

different cylinder groups. Use a bunch of

heuristics

Cylinder Groups Heuristics

* Try to put all inodes for a given directory in
the same cylinder group

* Try to put blocks for one file adjacent in the
cylinder group. The bitmap as a storage device

makes it easier to find adjacent groups of
blocks.

* For long files, redirect blocks to a new cylinder
group every megabyte. This spreads stuff out
over the disk at a large enough granularity to
amortize the seek time

Design choices

* Keep a free space reserve (5 to 10 percent)
— Necessary for good performance

— Once above reserve, only supervisor can allocate disk
blocks

— If disk almost completely full, allocation scheme
cannot keep related data together and allocation
scheme degenerates to random

* Increased block size (4096 bytes)

— Helps read bandwidth and write bandwidth for big
files

— But wastes space for small files. Solution: Introduce
concept of disk block fragment

Disk Block Fragments

Each disk block can be chopped up into 2,4, or 8
fragments

Each file contains at most one fragment wiich
holds the last part of data in the file.

So, if have 8 small files they together occupy only
one disk block. Can also allocate larger fragments
if the end of the file is larger than one-eighth of
the disk block

The bitmap is laid out at the granularity of
fragments

When increase the size of the file, may need to
copy out the last fragment if the size gets too big

Bottom line: read bandwidth up to 43% of peak
disk transfer rate for large files

Disk block cache

e OS maintains a cache of disk blocks in main
memory

e Cache replacement policy:

— LRU is easy to implement (compare with VM) but
not scan-resistant (sequential access)

— Read-ahead helps with sequential access

* Can we use the file system as a backing store
for VM? Can run into double caching

