
CSL373: Lecture 16
I/O and Disks

The Requirements of I/O
• So far in this course:

– We have learned how to manage CPU, memory
• What about I/O?

– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

• How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

• How can we make them reliable???
– Devices unpredictable and/or slow

• How can we manage them if we don’t know what they will do or
how they will perform?

• Some operational parameters:
– Byte/Block

• Some devices provide single byte at a time (e.g. keyboard)
• Others provide whole blocks (e.g. disks, networks, etc)

– Sequential/Random
• Some devices must be accessed sequentially (e.g. tape)
• Others can be accessed randomly (e.g. disk, cd, etc.)

– Polling/Interrupts
• Some devices require continual monitoring
• Others generate interrupts when they need service

Modern I/O Systems

Example Device-Transfer Rates (Sun Enterprise 6000)

• Device Rates vary over many orders of magnitude
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices
– This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”);
for (int i = 0; i < 10; i++) {
fprintf(fd,”Count %d\n”,i);

}
close(fd);

– Why? Because code that controls devices (“device driver”)
implements standard interface.

• We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture
– Can only scratch surface!

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(),
seek()

– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own

interface
– Unix and Windows include socket interface

• Separates network protocol from network operation
• Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process
to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of

bytes successfully transferred
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When request data, take pointer to user’s buffer, return

immediately; later kernel fills buffer and notifies user
– When send data, take pointer to user’s buffer, return

immediately; later kernel takes data and notifies user

Main components of Intel Chipset:
Pentium 4

• Northbridge:
– Handles memory

– Graphics

• Southbridge: I/O
– PCI bus

– Disk controllers

– USB controllers

– Audio

– Serial I/O

– Interrupt controller

– Timers

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does the processor actually talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that

can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:
– I/O instructions: in/out instructions

• Example from the Intel architecture: out 0x21,AL

– Memory mapped I/O: load/store instructions
• Registers/memory appear in physical address space

• I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display
memory into physical address space

• Addresses set by hardware jumpers or
programming at boot time

– Simply writing to display memory (also called
the “frame buffer”) changes image on screen

• Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to command-
queue area

• Say enter a set of triangles that describe some
scene

• Addr: 0x80010000—0x8001FFFF

– Writing to the command register may cause on-
board graphics hardware to do something

• Say render the above scene

• Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000

Command0x0007F004

Graphics
Command
Queue

0x80020000

Transfering Data To/From Controller

• Programmed I/O:
– Each byte transferred via processor in/out or

load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data

size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

Sample interaction with DMA
controller

• 2-30 heads (platters * 2)

– diameter 14’’ to 2.5’’
• 700-20480 tracks per surface

• 16-1600 sectors per track

• sector size:

– 64-8k bytes

– 512 for most pc’s

– note: inter-sector gaps

• capacity: 20M-100G

What do disks look like?

platter

track

sectors Disk arm

Read/write head

Some modern disks drives

Barracuda 180 Cheetah X15-26LP

Capacity 181GB 36.7GB

Platter/Heads 12/24 4/8

Cylinders 24,247 18,479

Sectors/track ~609 ~485

Speed 7200RPM 15000RPM

Latency (ms) 4.17 2.0

Avg seek (ms) 7.4/8.2 3.6/4.2

Track-2-track(ms) 0.8/1.1 0.3/0.4

Disk vs. Memory

• Smallest write: sector

• Atomic write = sector

• Random access: 5ms

– not improving

• Sequential access: 200MB/s

• Cost $.002MB

• Crash: doesn’t matter
(“non-volatile”)

• (usually) bytes

• byte, word

• 50 ns

– getting faster all the time

• 200-1000MB/s

• $.15MB

• contents gone (“volatile”)

Some useful facts

• Disk reads/writes in terms of sectors, not bytes
– read/write single sector or adjacent groups

• How to write a single byte? “Read-modify-write”
– read in sector containing the byte
– modify that byte
– write entire sector back to disk
– key: if cached, don’t need to read in

• Sector = unit of atomicity.
– sector write done completely, even if crash in middle

• (disk saves up enough momentum to complete)

– larger atomic units have to be synthesized by OS

Some useful costs
• Seek: move disk arm to the right track

– best case: 0ms (on track already)
– worst: ~30-50ms

(move over entire disk)
– average: 10-20ms, 1/3 worst case

• Rotational delay: wait for sec to rotate under head
– best: 0ms (over sector)
– worst: ~16ms (entire rotation)
– average: ~8ms (1/2 worst case)

• Transfer bandwidth: suck bits off of device
• Cost of disk access? Seek + rotation + transfer time

– read a single sector: 10ms + 8ms + 50us ~= 18ms
– Cool: read an entire track? Seek + transfer! (why?)

Some useful trends
• Disk bandwidth and cost/bit improving exponentially

– similar to CPU speed, memory size, etc.
• Seek time and rotational delay improving *very*

slowly
– why? require moving physical object (disk arm)

• Some implications:
– disk accesses a huge system bottleneck & getting worse
– bandwidth increase lets system (pre-)fetch large chunks for

about the same cost as small chunk.
• Result? trade bandwidth for latency if you can get lots of related

stuff.
• How to get related stuff? Cluster together on disk

– Memory size increasing faster than typical workload size
• More and more of workload fits in file cache
• disk traffic changes: mostly writes and new data

