CSL37/3: Lecture 16
/0 and Disks

The Requirements of 1/0

e So farin this course:
— We have learned how to manage CPU, memory

 What about I/0O?

— Without I/O, computers are useless (disembodied brains?)

— But... thousands of devices, each slightly different
 How can we standardize the interfaces to these devices?

— Devices unreliable: media failures and transmission errors
 How can we make them reliable???

— Devices unpredictable and/or slow
 How can we manage them if we don’t know what they will do or

how they will perform?
* Some operational parameters:

— Byte/Block
* Some devices provide single byte at a time (e.g. keyboard)
e Others provide whole blocks (e.g. disks, networks, etc)
— Sequential/Random
* Some devices must be accessed sequentially (e.g. tape)
e Others can be accessed randomly (e.g. disk, cd, etc.)
— Polling/Interrupts
* Some devices require continual monitoring
* Others generate interrupts when they need service

=i Modern I/O Systems

[0}
AT 3
) VAN 2 6
monitor N b 2
——— \~—— @
cache .
graphics bridge/memory sCS| controller
controller controller /i 7
(=== E
PCI bus)

el m&xmm%
5 RSN
IDE disk controller interface keyboard ‘\‘_) 8,

@ @ i expansion bus)
@ @ parallel serial
port

Example Device-Transfer Rates (Sun Enterprise 6000)

igaplane |
bus

SBUS

SCSI bus

fast
ethernet

hard disk

ethernet

laser
printer

modem

mouse

keyboard

i

0 0.01 01 1 10 100

* Device Rates vary over many orders of magnitude
— System better be able to handle this wide range
— Better not have high overhead/byte for fast devices!
— Better not waste time waiting for slow devices

The Goal of the I/O Subsystem

* Provide Uniform Interfaces, Despite Wide Range of
Different Devices

— This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”) ;
for (int i = 0; i < 10; 1i++4) {
fprintf (fd, "Count %d\n”,1i);

}
close (£d) ;

— Why? Because code that controls devices (“device driver”)
implements standard interface.

 We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture

— Can only scratch surface!

Want Standard Interfaces to Devices

* Block Devices: e.qg. disk drives, tape drives, DVD-ROM

— Access blocks of data

— Commands include open (), read(), write (),
seek ()

— Raw I/O or file-system access
— Memory-mapped file access possible
* Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
— Single characters at a time
— Commands include get (), put ()
— Libraries layered on top allow line editing

 Network Devices: e.g. Ethernet, Wireless, Bluetooth

— Different enough from block/character to have own
interface
— Unix and Windows include socket interface
» Separates network protocol from network operation
* Includes select () functionality

— Usage: pipes, FIFOs, streams, queues, mailboxes

How Does User Deal with Timing?

* Blocking Interface: “Wait”

— When request data (e.g. read () system call), put process
to sleep until data is ready

— When write data (e.g. write () system call), put process
to sleep until device is ready for data

* Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of
bytes successfully transferred

— Read may return nothing, write may write nothing

* Asynchronous Interface: “Tell Me Later”

— When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

— When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Main components of Intel Chipset:
Pentium 4

Imtel* Pentium® 4
Processor
Extreme Edition

6.4 GB/s

* Northbridges

— Handles memory

— Graphics

* Southbridge: 1/Q e
— PCl bus G
— Disk controllers Definition Audio
— USB controllers Boress
— Audio vss 2P
— Serial I/O

— Interrupt controller
— Timers

How does the processor actually talk to the device?

Processor Memory Bus Regular
Memory
Bus Bus " \
Adapt Adapt Eewce”
_ Address+ ontrofier
Other Devices < Data Bus Hardware
Interrupt or Buses
Controller [Interface || Controller
Interrupt Request
* CPU interacts with a Controller read Addressable
— Contains a set of registers that control Memory
. status and/or
can be read and written Reg /
egisters Queues
— May contain memory for request (port 0x20)
)) Memory Mapped
queues or bit-mapped images Region: Ox&F008020 |

* Regardless of the complexity of the connections and buses,
processor accesses reglsters in two ways:

— |/O instructions: in/out instructions
* Example from the Intel architecture: out 0x21, AL
— Memory mapped I/O: load/store instructions

* Registers/memory appear in physical address space
* 1/0 accomplished with load and store instructions

Example: Memory-Mapped Display Control

Memory-Mapped:

— Hardware maps control registers and display
memory into physical address space

* Addresses set by hardware jumpers or
programming at boot time

— Simply writing to display memory (also called
the “frame buffer”) changes image on screen
e Addr: 0x8000FO00—0x8000FFFF
— Writing graphics description to command-
qgueue area

e Say enter a set of triangles that describe some
scene

« Addr: 0x80010000—0x8001FFFF

— Writing to the command register may cause on——+

Physical Address
\h L\L Space
))

board graphics hardware to do something

* Say render the above scene
e Addr: 0x0007F004

Can protect with page tables

0x80020000 Graphi cs
Command
Queue
0x80010000 _
Display
Memory
Ox8000F000
Ox0007F004 Command
Ox0007F000 Status

er

NSe—

Transfering Data To/From Controller

* Programmed 1/0:
— Each byte transferred via processor in/out or
load/store
— Pro: Simple hardware, easy to program

— Con: Consumes processor cycles proportional to data
Size

* Direct Memory Access:
— Give controller access to memory bus
— Ask it to transfer data to/from memory directly

Sample interaction with DMA
controller

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer e
and decreasing C at address X
untilC =0 T
us
6. when C = 0, DMA : —r X
interrupts CPU to signal mtetrrLljlpt)— CPU memory bus memory | buffer
transfer completion e
r PCl bus
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller

disk) (disk

What do disks look like?

2-30 heads (platters * 2)

— diameter 14"’ to 2.5”

700-20480 tracks per
16-1600 sectors /
sector size:

platter

— 64-8k bytes

— 512 for most pc’s
— note: inter-sector gaps

capacity: 20M-100G

sectors Disk arm

Read/write head

Some modern disks drives

Barracuda 180

Cheetah X15-26LP

Capacity 1816B 36.76B
Platter/Heads 12/24 4/8
Cylinders 24,247 18,479
Sectors/track ~609 ~485
Speed 7200RPM 15000RPM
Latency (ms) 417 2.0

Avg seek (ms) 7.4/8.2 3.6/4.2
Track-2-track(ms) |0.8/1.1 0.3/0.4

Disk VS. Memory

Smallest write: sector e (usually) bytes
Atomic write = sector * byte, word
Random access: 5ms * 50ns
— not improving — getting faster all the time
Sequential access: 200MB/s ¢ 200-1000MB/s
Cost S.002MB « S.15MB
Crash: doesn’t matter e contents gone (“volatile”)

(“non-volatile”)

Some useful facts

* Disk reads/writes in terms of sectors, not bytes
— read/write single sector or adjacent groups

* How to write a single byte? “Read-modify-write”

— read in sector containing the byte |
— modify that byte

| L1 1
— write entire sector back to disk
— key: if cached, don’t need ic read in | [T 1
* Sector = unit of atomicity.

— sector write done completely, even if crash in middle
 (disk saves up enough momentum to complete)

— larger atomic units have to be synthesized by OS

Some useful costs

Seek: move disk arm to the right trac

— best case: Oms (on track already) —>

— worst: ~30-50ms - T ==
(move over entire disk) CC ¢ RIS

— average: 10-20ms, 1/3 worst ca =
Rotational delay: wait for sec to rotate under he
— best: Oms (over sector)

— worst: ¥16ms (entire rotation)

— average: ~8ms (1/2 worst case)

Transfer bandwidth: suck bits off of device
Cost of disk access? Seek + rotation + transfer time

— read a single sector: 10ms + 8ms + 50us ~= 18ms
— Cool: read an entire track? Seek + transfer! (why?)

=3\

Some useful trends

* Disk bandwidth and cost/bit improving exponentially
— similar to CPU speed, memory size, etc.

e Seek time and rotational delay improving *very*

slowly
— why? require moving physical object (disk arm)

e Some implications:
— disk accesses a huge system bottleneck & getting worse
— bandwidth increase lets system (pre-)fetch large chunks for

about the same cost as small chunk.
. Rtes#lt? trade bandwidth for latency if you can get lots of related
stuff.
 How to get related stuff? Cluster together on disk
— Memory size increasing faster than typical workload size
* More and more of workload fits in file cache
* disk traffic changes: mostly writes and new data

