
CSL373: Operating Systems
Fault Tolerance

Modularity = fault tolerance

• Modularity to control complexity
– Names are the glue to compose modules

• Strong form of modularity: client/server
– Limit propagation of errors

• Implementations of client/server:
– In a single computer using virtualization

– In a network using protocols

• Compose clients and services using names
– DNS

How to respond to failures?

• Failures are contained; they don’t propagate
– Benevolent failures

• Can we do better?
– Keep computing despite failures?

– Defend against malicious failures (attacks)?

• handle these “failures”
– Fault-tolerant computing

– Computer security

Fault-tolerant computing

• General introduction:

– Replication/Redundancy

• The hard case: transactions

– updating permanent data in the presence of
concurrent actions and failures

• Replication revisited: consistency

Availability in practice

• Carrier airlines (2002 FAA fact book)
– 41 accidents, 6.7M departures

 99.9993% availability

• 911 Phone service (1993 NRIC report)
– 29 minutes per line per year

 99.994%

• Standard phone service (various sources)
– 53+ minutes per line per year

 99.99+%

• End-to-end Internet Availability
 95% - 99.6%

Disk failure conditional probability distribution

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn
out

Bathtub curve

Human Mortality
Rates

(US, 1999)

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004.

Data from http://www.mortality.org

Disk Performance

• Throughput: 125 requests/second

• Bandwidth: 20-200MB/s (max) 15-30MB/s(sustained)

• Speed gap between disks and CPU/Memory is
widening
– CPU speed increases @ 60%/year

– Disks speed increas @ 10-15%/year

• Improvement in disk technologies impressive in
capacity/cost area

• Single Large Expensive Disk (SLED)

Fail-fast disk

failfast_get (data, sn) {

get (s, sn);

if (checksum(s.data) = s.cksum) {

data  s.data;

return OK;

} else {

return BAD;

}

}

Careful disk

careful_get (data, sn) {

r  0;

while (r < 10) {

r  failfast_get (data, sn);

if (r = OK) return OK;

r++;

}

return BAD;

}

Durable disk (RAID 1)

durable_get (data, sn) {

r  disk1.careful_get (data, sn);

if (r = OK) return OK;

r  disk2.careful_get (data, sn);

signal(repair disk1);

return r;

}

Improvement of Reliability via
Redundancy

• As the number of disks per component increases,
the probability of failure also increases

– Suppose a (reliable) disk fails every 100,000 hours.
Reliability of a disk in an array of N disks = 100,000/N.

– 100,000/100 = 1000 hours = 41.66 days!

• Solution?

– Redundancy

Redundancy

• Mirroring

• Data Striping

Reliability in Mirroring

• Suppose mean time to repair is 10 hours, the
mean time to data loss of a mirrored disk
system is:

(100,000^2)/(2*10) hrs ~ 57,000 years!

• Main disadvantage: most expensive approach

Parallel Disk Systems
• We cannot improve disk performance

significantly as a single drive. But, could we
combine the power of many drives?

• Solutions:
– Parallel Disk Systems

– Higher Reliability and Higher data-transfer rate

1

5

…

2

6

3

7

4

8

Data Striping

• Fundamental to RAID

• A method of concatenating multiple drives
into one logical storage unit

• Splitting the bits of each byte across multiple
disks: bit-level striping
– E.g., an array of eight disks, write bit i of each byte

to disk i

• Sectors are eight times the normal size

• Eight times the access rate

• Similarly for blocks of file, block-level striping

RAID 0

• Striping at the level of blocks

• No redundancy, hence reliability problems

1

5

…

2

6

3

7

4

8

RAID 1 (Mirroring)

• Introduce redundancy through mirroring

• Expensive (cost/MB)

• Performance Issues

1

3

…

2

4

1

3

2

4

RAID 2
• Uses Hamming (or any other) error-correcting

code (ECC)

• Intended for use in drives which do not have
in-built error detection

• Central Idea: If one of the disks fail, the
remaining bits of the byte and the associated
ECC bits can be used to reconstruct the data

1

5

…

2

6

3

7

4

8

f0(1..4)

f0(5..8)

f1(1..4)

f1(5..8)

f2(1..4)

f2(5..8)

RAID 3 (Bit-interleaved parity)

• Disk Controllers can detect whether a sector
has been read correctly

• Storage overhead reduced – only 1 parity disk

• Expense of computing and writing parity

• Need to include a dedicated parity hardware

1

5

…

2

6

3

7

4

8

P(1..4)

P(5..8)

RAID 4 (block-interleaved parity)
• Stripes data at a block level across several

drives with parity stored on one drive

• Allows recovery from the failure of any of the
disks

• Performance is very good for reads

• Writes require that parity data be updated
each time. Slows small random writes, but
large writes are fairly fast

B1

B5

…

B2

B6

B3

B7

B4

B8

P(1..4)

P(5..8)

Mass Storage Lecture 18 - 24

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

D0 D1 D2 D3 PD0'

D1 D2 D3

+

2. Read
old parity

XOR

+

1. Read
old data

XOR

D0'

new
data

3. Write
new data

P'

4. Write
new parity

Problem of Disk Arrays: Small Writes

RAID 5 (Block-Interleaved distributed
parity)

• Spreads data and parity among N+1 disks,
rather than storing data in N disks, and parity
in 1 disk

• Avoids potential overuse of single parity disk

• Most common parity RAID system

B1

B5

B9

B2

B6

B10

B3

B7

P(9..12)

B4

P(5..8)

B11

P(1..4)

B8

B12

…

Lecture 18 - 26

High I/O Rate Parity Array

Interleaved parity blocks
Independent reads and writes
Logical write = 2 reads + 2 writes
Parity + Reed-Solomon codes

Disk Mirroring, Shadowing

Each disk is fully duplicated onto its "shadow"
Logical write = two physical writes
100% capacity overhead

1
0
0
1
0
0
1
1

Shadow
1
0
0
1
0
0
1
1

Parity Data Bandwidth Array

Parity computed horizontally
Recovery purpose instead of fault detection

Logically a single high data bw disk

Parity

1
0
0
1
0
0
1
1

1
0
1
1
1
0
0
1

1
0
1
1
0
0
1
1

0
1
1
0
0
1
1
0

Redundant Array of Inexpensive Disks
(RAID)

Subsystem Organization

host
Host

adapter
array

controller

Single
board disk
controller

Single
board disk
controller

Single
board disk
controller

Manages
interface to
host, DMA

Control,
buffering,
parity logic

Physical
device
control

•Striping software off-loaded from host to array controller
•No applications modification
•No reduction to host performance

Recovery
Group

Goal:
No Single
Points of
Failure

with duplicated paths, higher performance
can be obtained when there are no failures

Fully dual redundantI/O Controller I/O Controller

Array Controller Array Controller

. . .

. . .

. . .

.

.

.

.

host

System-level Availability

