CSL373: Lecture 14
User level memory management

Today: dynamic memory allocation

* Almost every useful program uses dynamic allocation:
— gives wonderful functionality benefits

* don’t have to statically specify complex data structures
e can have data grow as a function of input size
 allows recursive procedures (stack growth)

— but, can have a huge impact on performance
 Today: how to implement, what’s hard.
 Some interesting facts:

— two or three line code change can have huge, non-obvious
impact on how well allocator works (examples to come)

— proven: impossible to construct an “always good” allocator

— surprising result: after 35 years, memory management still
poorly understood.

What's the goal? And why is it hard?

» Satisfy arbitrary set of allocation and free’s

e Easy without free: set a pointer to the beginning of
some big chunk of memory (“heap”) and increment on
each allocation:

>

allocation o
‘ current free position

* Problem: free creates holes (“fragmentation”) Result?
Lots of free space but cannot satisfy request!

INEEENIIEEIE

More abstractly

freelist

 What an allocator must do:
— track which parts of memory inm
— ideal: no wasted space, no time overhead

 What the allocator cannot do:

— control order of the number and size of requested blocks
— change user ptrs = (bad) placement decisions permanent

b —

malloc(20)?

* The core fight: minimize fragmentation
— app frees blocks in any order, creating holes in “heap”
— holes too small? cannot satisfy future requests.

What is fragmentation really?

* “inability to use memory that is free”

e TWO causes

— Different lifetimes: if adjacent objects die at different
times, then fragmentation:

INEENIINNIN

— if they die at the same time, then no fragmentation:

— Different sizes: if all requests the same size, then no
fragmentation (paging artificially creates this)

BN NN NNNNN,

The important decisions for
fragmentation

* Placement choice: where in free memory to put a
requested block?

— freedom: can select any memory in the heap

— ideal: put block where it won’t cause fragmentation later.
(impossible in general: requires future knowledge)

* Splitting free blocks to satisfy smaller requests
— fights internal fragmentation
— freedom: can chose any larger block to split
— one way: chose block with smallest remainder (best fit)
* Coalescing free blocks to yield larger blocks
— freedom: when coalescing done (deferring can be good)
— fights external fragmentation

‘20 ‘10 | - ‘_,‘ 30 ‘ 30 ‘

Impossible to “solve” fragmentation

* |f you read allocation papers or books to find the best
allocator(!?!?!) it can be frustrating:

— all discussions revolve around tradeoffs
— the reason? There cannot be a best allocator

* Theoretical result:

— for any possible allocation algorithm, there exist streams of
allocation and deallocation requests that defeat the
allocator and force it into severe fragmentation.

e Whatis bad?

— Good allocator: M*log(n) where M = bytes of live data and
n = ratio between smallest and largest sizes.

— Bad allocator: M*n

Pathological examples

* Given allocation of 7 20-byte chunks

‘ 20 ‘ 20 ‘ 20 ‘ 20 ‘ 20 ‘ 20 ‘ 20

— What’s a bad stream of frees and then allocates?
* Given 100 bytes of free space

‘ 100 ‘

— What's a really bad combination of placement decisions and
malloc & frees?

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well.

— “pretty wel

|”

= ~20% fragmentation under many workloads

Best fit

* Strategy: minimize fragmentation by allocating space from
block that leaves smallest fragment

— Data structure: heap is a list of free blocks, each has a header
holding block size and pointers to next

o] o | 0 | 31— | —

— Code: Search freelist for block closest in size to the request.
(Exact match is ideal)

— During free (usually) coalesce adjacent blocks

* Problem: Sawdust

— remainder so small that over time left with “sawdust”
everywhere

— fortunately not a problem in practice

Best fit gone wrong

* Simple bad case: allocate n, m (m<n) in alternating orders,
free all the m’s, then try to allocate an m+1.

 Example: start with 100 bytes of memory
— alloc 19, 21, 19, 21, 19

| 19 | 21 |19 | 21 |19 |
— free 19, 19, 19:
19 21 19 21 | 19 |

— alloc 207 Fails! (wasted space = 57 bytes)
 However, doesn’t seem to happen in practice

First fit

Strategy: pick the first block that fits

— Data structure: free list, sorted lifo, fifo, or by address
— Code: scan list, take the first one.

LIFO: put free object on front of list.

— Simple, but causes higher fragmentation

Address sort: order free blocks by address.

— Makes coalescing easy (just check if next block is free)
— Also preserves empty space (good)

FIFO: put free object at end of list.

— Gives ~ fragmentation as address sort, but unclear
why

An example subtle pathology: LIFO FF

e Storage management example of subtle impact of
simple decisions

* LIFO first fit seems good:

— put object on front of list (cheap), hope same size
used again (cheap + good locality).

* But, has big problems for simple allocation
patterns:

— repeatedly intermix short-lived large allocations, with
long-lived small allocations.

— Each time large object freed, a small chunk will be
quickly taken. Pathological fragmentation.

First fit: Nuances

* First fit + address order in practice:

— Blocks at front preferentially split, ones at back only split when
no larger one found before them

— Result? Seems to roughly sort free list by size

— So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!

* Problem: sawdust at beginning of the list

— sorting of list forces a large requests to skip over many small
blocks. Need to use a scalable heap organization

* When better than best fit?
— Suppose memory has free blocks:

— Suppose allocation ops are 10 then 20
— Suppose allocation ops are 8, 12, then 12 ‘20 ‘ ‘ ‘15 ‘ ‘

The strange parallels of first and best
fit
Both seem to perform roughly equivalently
In fact the placement decisions of both are roughly

identical under both randomized and real workloads!
— Pretty strange since they seem pretty different

Possible explanations:

— first fit ~ best fit because over time its free list becomes
sorted by size: the beginning of the free list accumulates
small objects and so fits tend to be close to best

— both have implicit “open space hueristic” try not to cut
into large open spaces: large blocks at end only used until
have to be (e.g., first fit: skips over all smaller blocks)

Some worse ideas

e Worst-fit:

— strategy: fight against sawdust by splitting blocks to
maximize leftover size

— in real life seems to ensure that no large blocks around

 Next fit:

— strategy: use first fit, but remember where we found the
last thing and start searching from there.

— Seem:s like a good idea, but tends to break down entire list
* Buddy systems:

— round up allocations to make management faster

— result? heavy internal fragmentation

Known patterns of real programs

e So far we’ve treated programs as black boxes.
* Most real programs exhibit 1 or 2 (or all 3) of the
following patterns of alloc/dealloc:

— ramps: accumulate data monotonically over time

A

bytes /
>

— peaks: allocate many objects, use briefly, then free all

s YA W

— plateaus: allocate many objects, use for a long time

bytes]/ \
>

>

Pattern 1: ramps

Bytes in use
\

\
S

- time
e.g., an LRU simulator

* |n a practical sense: ramp = no free!
— Implication for fragmentation?

— What happens if you evaluate allocator with ramp programs
only?

Pattern 2: peaks

Bytes in use

time
trace of gcc compiling with full optimization
* Peaks: allocate many objects, use briefly, then free all
— Fragmentation a real danger.
— Interleave peak & ramp? Interleave two different peaks?
— What happens if peak allocated from contiguous memory?

Exploiting peaks
* Peak phases: alloc a lot, then free everything

— so have new allocation interface: alloc as before, but
only support free of everything.

— called “arena allocation”, “obstack” (object stack), or
procedure call (by compiler people)

e arena = a linked list of large chunks of memory.

Advantages: alloc is a pointer increment, free is “free”,

& there is no wasted space for tags or list pointers.

64k
64k 1

<+—— free pointer

Pattern 3: Plateaus

Bytes in use

time

trace of perl running a string processing script

* Plateaus: allocate many objects, use for a long time
— what happens if overlap with peak or different plateau?

Some observations to fight
fragmentation

e Segregation = reduced fragmentation:
— Allocated at same time ~ freed at same time
— Different type ~ freed at different time

TTT1T11 I —— I
AR | —{T T |

* |Implementation observations:
— Programs allocate small number of different sizes
— Fragmentation at peak use more important than at low
— Most allocations small (< 10 words)
— Work done with allocated memory increases with size.
— Implications?

Simple, fast segregated free lists

* Array of with free list to small sizes, tree for larger

n 2

page

2

-

= Place blocks of same size on same page. Have coguErD

of allocated blocks: if goes to zero, can return pa

— Pro: segregate sizes + no size tag + very fast small alloc
— Con: worst case waste: 1 page per size.

— store siz

Typical space overheads

* Free list bookkeeping + alignment determine minimum
allocatable size:

e of block

— pointers to next and previous freelist element

12

116

0xf0

|

Oxfc

8 byte alighment? addr % 8 =0

— Machine enforced overhead: alignment. Allocator doesn’t know
type. Must aligh memory to conservative boundary.

— Minimum allocation unit? Space overhead when allocated?

How do you actually get space?

* On Unix use sbrk to grow process’s heap segment:

heap /* add nbytes of valid virtual address space */
void *get_free_space(unsigned nbytes) {
void *p;
sbrk(4096) if(!(p = sbrk(nbytes)))
""""""""""" error(“virtual memory exhausted”);
return p;

}

* Activates a zero-filled page sized chunk of virtual
address space.

— Remove from address space with sbrk(-nbytes)
— This last block called “the wilderness”

Malloc versus OS memory
management

e Relocation:

— Virtual memory allows OS to relocate physical blocks (just
update page table) as a result, it can compact memory.

— User-level cannot. Placement decisions permanent

* Size and distribution: EELEEE
— 0OS: small number of large objects] heap':i:l:l
— malloc: huge number of small objs D -
— internal fragmentation more important 1
— speed of allocation very important T
stack

* Duplication of data structures ‘ code \

— malloc memory management layered on top of VM
— why can’t they cooperate?

Fragmentation generalized

* Whenever we allocate, fragmentation is a problem
— CPU, memory, disk blocks, ...
— more general stmt: “the inability to use X that is free”

* |nternal fragmentation:
— How does malloc minimize internal fragmentation?

— What corresponds to internal fragmentation of a process’s time
quanta? How does scheduler minimize this?

— In a book? How does the English language minimize? (and:
Page size tradeoffs?)

e External frag = cannot satisfy allocation request
— why is external fragmentation not a problem with money?

Reclamation: beyond free

e Automatic reclamation:

— User-level: Anything manual can be done wrong: storage de-
allocation a major source of bugs

— OS level: OS must manage reclamation of shared resources to
prevent evil things.

e How?
— Easy if only used in one place: when ptr dies, deallocate
(example?)
— Hard when shared: can’t recycle until all sharers done

N
— sharing indicated by the presence of pointers to the data

— insight: no pointers to data = it’s free!
— 2 schemes: ref counting; mark & sweep garbage collection

Reference counting

* Algorithm: counter pointers to object 3 b
— each object has “ref count” of pointers to it
— increment when pointer set to it
— decremented when pointer killed

void foo(bar c) { ‘ ref=2 ‘
bar a, b;
a=c; e C->rEant++;
b= a; e a->rEant++;
a=0; <€ a->refent--;
return; e b->rEant“;
}

— refcnt = 0? Free resource

— works fine for hierarchical data structures
 file descriptors in Unix, pages, thread blocks

Problems

e Circular data structures always have refcnt >0
— if no external references = lost!

/\
¢

* Naive: have to do on every object reference creation,
deletion

— Without compiler support, easy to forget decrement or
increment. Nasty bug.

Mark & sweep garbage collection

e Algorithm: mark all reachable memory; rest is garbage

— must find all “roots” - any global or stack variable that holds a
pointer to an object.

— Must find all pointers in objects /

e pass 1: mark L

d

— mark memory pointed to by roots. Then recursively mark all
objects these point to, ...

* pass 2:sweep

— go through all objects, free up those that aren’t marked.

— Usually entails moving them to one end of the hea a b
(compaction) and updating pointers ,/b

o ¢

Some details

 Huge lever: Can update pointers
— So can compact instead of running out of storage
— |Is fragmentation no longer an issue?
 Compiler support helps (to parse objects).
— Java and Modula-3 support GC
e Can sort of do it without: “conservative gc”
— at every allocation,

, Oxff3ef0

record (address, size) 0x3ef0 Heap
0x8 10xff000

— scan heap, data & stack for

integers that would be 0xff400

legal pointer values and mark! 0x500
0x400 data

|code

