
CSL373: Lecture 14
User level memory management



Today: dynamic memory allocation

• Almost every useful program uses dynamic allocation:
– gives wonderful functionality benefits

• don’t have to statically specify complex data structures
• can have data grow as a function of input size
• allows recursive procedures (stack growth)

– but, can have a huge impact on performance

• Today: how to implement, what’s hard.  
• Some interesting facts:

– two or three line code change can have huge, non-obvious 
impact on how well allocator works (examples to come)

– proven: impossible to construct an “always good” allocator
– surprising result: after 35 years, memory management still 

poorly understood.



What’s the goal?  And why is it hard?

• Satisfy arbitrary set of allocation and free’s

• Easy without free: set a pointer to the beginning of 
some big chunk of memory (“heap”) and increment on 
each allocation:

• Problem: free creates holes (“fragmentation”)  Result?  
Lots of free space but cannot satisfy request!

heap (free memory)

current free positionallocation



More abstractly 

• What an allocator must do:
– track which parts of memory in use, which parts are free

– ideal: no wasted space, no time overhead

• What the allocator cannot do:
– control order of the number and size of requested blocks

– change user ptrs = (bad) placement decisions permanent 

• The core fight: minimize fragmentation
– app frees blocks in any order, creating holes in “heap”

– holes too small? cannot satisfy future requests.  
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What is fragmentation really?

• “inability to use memory that is free”
• Two causes

– Different lifetimes: if adjacent objects die at different 
times, then fragmentation:

– if they die at the same time, then no fragmentation:

– Different sizes: if all requests the same size, then no 
fragmentation (paging artificially creates this)



The important decisions for 
fragmentation

• Placement choice: where in free memory to put a 
requested block? 
– freedom: can select any memory in the heap
– ideal: put block where it won’t cause fragmentation later.  

(impossible in general: requires future knowledge)

• Splitting free blocks to satisfy smaller requests
– fights internal fragmentation
– freedom: can chose any larger block to split
– one way: chose block with smallest remainder (best fit)

• Coalescing free blocks to yield larger blocks  
– freedom: when coalescing done (deferring can be good)
– fights external fragmentation
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Impossible to “solve” fragmentation

• If you read allocation papers or books to find the best 
allocator(!?!?!) it can be frustrating:
– all discussions revolve around tradeoffs
– the reason?  There cannot be a best allocator

• Theoretical result: 
– for any possible allocation algorithm, there exist streams of 

allocation and deallocation requests that defeat the 
allocator and force it into severe fragmentation.  

• What is bad?   
– Good allocator: M*log(n) where M = bytes of live data and 

n = ratio between smallest and largest sizes. 
– Bad allocator: M*n 



Pathological examples

• Given allocation of 7 20-byte chunks

– What’s a bad stream of frees and then allocates?

• Given 100 bytes of free space

– What’s a really bad combination of placement decisions and 
malloc & frees? 

• Next: two allocators (best fit, first fit) that, in practice, work 
pretty well.
– “pretty well” = ~20% fragmentation under many workloads
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Best fit

• Strategy: minimize fragmentation by allocating space from 
block that leaves smallest fragment
– Data structure: heap is a list of free blocks, each has a header 

holding block size and pointers to next

– Code: Search freelist for block closest in size to the request.  
(Exact match is ideal)

– During free (usually) coalesce adjacent blocks

• Problem: Sawdust
– remainder so small that over time left with “sawdust” 

everywhere 
– fortunately not a problem in practice
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• Simple bad case: allocate n, m (m<n) in alternating orders, 
free all the m’s, then try to allocate an m+1.

• Example: start with 100 bytes of memory

– alloc 19, 21, 19, 21, 19

– free 19, 19, 19:

– alloc 20?  Fails!  (wasted space = 57 bytes)

• However, doesn’t seem to happen in practice

Best fit gone wrong

19          21  19                 21              19

19           21               19           21            19



First fit

• Strategy: pick the first block that fits
– Data structure: free list, sorted lifo, fifo, or by address
– Code: scan list, take the first one.

• LIFO: put free object on front of list.  
– Simple, but causes higher fragmentation

• Address sort: order free blocks by address.  
– Makes coalescing easy (just check if next block is free)
– Also preserves empty space (good)

• FIFO: put free object at end of list.  
– Gives ~ fragmentation as address sort, but unclear 

why



An example subtle pathology: LIFO FF

• Storage management example of subtle impact of 
simple decisions

• LIFO first fit seems good:
– put object on front of list (cheap), hope same size 

used again (cheap + good locality).

• But, has big problems for simple allocation 
patterns:
– repeatedly intermix short-lived large allocations, with 

long-lived small allocations.
– Each time large object freed, a small chunk will be 

quickly taken.  Pathological fragmentation.



First fit: Nuances

• First fit + address order in practice:  
– Blocks at front preferentially split, ones at back only split when 

no larger one found before them
– Result? Seems to roughly sort free list by size 
– So? Makes first fit operationally similar to best fit: a first fit of a 

sorted list = best fit!

• Problem: sawdust at beginning of the list
– sorting of list forces a large requests to skip over many small 

blocks.  Need to use a scalable heap organization

• When better than best fit?
– Suppose memory has free blocks:
– Suppose allocation ops are 10 then 20
– Suppose allocation ops are 8, 12, then 12
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The strange parallels of first and best 
fit

• Both seem to perform roughly equivalently

• In fact the placement decisions of both are roughly 
identical under both randomized and real workloads!
– Pretty strange since they seem pretty different

• Possible explanations:
– first fit ~ best fit because over time its free list becomes 

sorted by size: the beginning of the free list accumulates 
small objects and so fits tend to be close to best

– both have implicit “open space hueristic” try not to cut 
into large open spaces: large blocks at end only used until 
have to be  (e.g., first fit: skips over all smaller blocks)



Some worse ideas

• Worst-fit: 
– strategy: fight against sawdust by splitting blocks to 

maximize leftover size

– in real life seems to ensure that no large blocks around

• Next fit:
– strategy: use first fit, but remember where we found the 

last thing and start searching from there.

– Seems like a good idea, but tends to break down entire list

• Buddy systems:
– round up allocations to make management faster

– result? heavy internal fragmentation



Known patterns of real programs
• So far we’ve treated programs as black boxes. 

• Most real programs exhibit 1 or 2 (or all 3) of the 
following patterns of alloc/dealloc:

– ramps: accumulate data monotonically over time

– peaks: allocate many objects, use briefly, then free all

– plateaus: allocate many objects, use for a long time

bytes

bytes

bytes



• In a practical sense:  ramp = no free!
– Implication for fragmentation?
– What happens if you evaluate allocator with ramp programs 

only?

Pattern 1: ramps
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• Peaks: allocate many objects, use briefly, then free all
– Fragmentation a real danger.  

– Interleave peak & ramp? Interleave two different peaks? 

– What happens if peak allocated from contiguous memory? 

Pattern 2: peaks
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• Peak phases: alloc a lot, then free everything

– so have new allocation interface: alloc as before, but 
only support free of everything. 

– called “arena allocation”, “obstack” (object stack), or 
procedure call (by compiler people)

• arena = a linked list of large chunks of memory. 

– Advantages: alloc is a pointer increment, free is “free”, 
& there is no wasted space for tags or list pointers.

Exploiting peaks

free pointer

64k64k



• Plateaus: allocate many objects, use for a long time
– what happens if overlap with peak or different plateau?

Pattern 3: Plateaus 

time

B
yt

es
 in

 u
se

trace of perl running a string processing script



Some observations to fight 
fragmentation

• Segregation = reduced fragmentation:
– Allocated at same time ~ freed at same time
– Different type ~ freed at different time

• Implementation observations:
– Programs allocate small number of different sizes
– Fragmentation at peak use more important than at low
– Most allocations small (< 10 words)
– Work done with allocated memory increases with size.
– Implications?



Simple, fast segregated free lists

• Array of with free list to small sizes, tree for larger

– Place blocks of same size on same page.  Have count 
of allocated blocks: if goes to zero, can return page

– Pro: segregate sizes + no size tag + very fast small alloc
– Con: worst case waste: 1 page per size.

pageR
=
2



• Free list bookkeeping + alignment determine minimum 
allocatable size:
– store size of block 
– pointers to next and previous freelist element

– Machine enforced overhead: alignment.  Allocator doesn’t know 
type.  Must align memory to conservative boundary.

– Minimum allocation unit?  Space overhead when allocated?

Typical space overheads

12 16

8 byte alignment? addr % 8 =0
0xf0 0xfc



• On Unix use sbrk to grow process’s heap segment:

• Activates a zero-filled page sized chunk of virtual 
address space. 
– Remove from address space with sbrk(-nbytes) 
– This last block called “the wilderness”

How do you actually get space?

heap

sbrk(4096)

/* add nbytes of valid virtual address space */
void *get_free_space(unsigned nbytes) {
void *p;
if(!(p = sbrk(nbytes)))

error(“virtual memory exhausted”);
return p;

}    



Malloc versus OS memory 
management

• Relocation: 
– Virtual memory allows OS to relocate physical blocks (just 

update page table) as a result, it can compact memory.
– User-level cannot.  Placement decisions permanent 

• Size and distribution:
– OS: small number of large objects
– malloc: huge number of small objs
– internal fragmentation more important
– speed of allocation very important 

• Duplication of data structures
– malloc memory management layered on top of VM
– why can’t they cooperate?

heap

code

data

stack



Fragmentation generalized

• Whenever we allocate, fragmentation is a problem
– CPU, memory, disk blocks, … 
– more general stmt: “the inability to use X that is free”

• Internal fragmentation: 
– How does malloc minimize internal fragmentation?
– What corresponds to internal fragmentation of a process’s time 

quanta? How does scheduler minimize this?
– In a book?  How does the English language minimize?  (and: 

Page size tradeoffs?)

• External frag = cannot satisfy allocation request
– why is external fragmentation not a problem with money?



Reclamation: beyond free

• Automatic reclamation:
– User-level: Anything manual can be done wrong: storage de-

allocation a major source of bugs
– OS level: OS must manage reclamation of shared resources to 

prevent evil things.

• How?
– Easy if only used in one place: when ptr dies, deallocate

(example?)
– Hard when shared: can’t recycle until all sharers done

– sharing indicated by the presence of pointers to the data
– insight: no pointers to data = it’s free! 
– 2 schemes: ref counting; mark & sweep garbage collection

a b



Reference counting

• Algorithm:  counter pointers to object
– each object has “ref count” of pointers to it
– increment when pointer set to it
– decremented when pointer killed

– refcnt = 0?  Free resource
– works fine for hierarchical data structures

• file descriptors in Unix, pages, thread blocks

ref=2

a b

void foo(bar c) { 
bar a, b;
a = c;      c->refcnt++;
b = a;      a->refcnt++;
a = 0; a->refcnt--;
return;       b->refcnt--;

}



Problems

• Circular data structures always have refcnt > 0
– if no external references = lost!

• Naïve: have to do on every object reference creation, 
deletion
– Without compiler support, easy to forget decrement or 

increment.  Nasty bug.

ref=1

ref=1 ref=1



Mark & sweep garbage collection

• Algorithm: mark all reachable memory; rest is garbage
– must find all “roots” - any global or stack variable that holds a 

pointer to an object. 
– Must find all pointers in objects

• pass 1:  mark

– mark memory pointed to by roots.  Then recursively mark all 
objects these point to, …

• pass 2: sweep

– go through all objects, free up those that aren’t marked.
– Usually entails moving them to one end of the heap 

(compaction) and updating pointers

a b

a
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Some details

• Huge lever: Can update pointers
– So can compact instead of running out of storage
– Is fragmentation no longer an issue?

• Compiler support helps (to parse objects).  
– Java and Modula-3 support GC

• Can sort of do it without: “conservative gc” 
– at every allocation, 
record (address, size)

– scan heap, data & stack for
integers that would be 
legal pointer values and mark!

0xff3ef0
0x3ef0
0x8

Heap
0xff000

0x8000
stack
0x500
data
code

0xff400

0x400


