
CSL373: Operating Systems
Virtual Memory



Lecture overview

• Virtual memory
Maps virtual addresses to physical pages & disk 

blocks.

Like processes, a well-proven OS abstraction: ~40 
years old

Today: what it’s good for, how to build one

• Readings: Silberschatz Chapter 8



Problem: we want processes to co-
exist

• Consider a primitive system running three 
processes in physical memory:

• What happens if bochs wants to expand?

• If emacs needs more memory than is on the machine??

• If bochs has an error and writes to address 0x7100?

• When does gcc have to know it will run at 0x4000?

• What if emacs isn’t using its memory?
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Issues in sharing physical memory
• Protection: errors in one process should only affect it

all systems conceptually: record process’s legal address range(s), 
check that each load and store only references a local address

• Transparency: a process should be able to run 
regardless of its location in or the size of physical 
memory

Give each process a large, static “fake” address space; as process 
runs, relocate each load and store to its actual memory
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Clever?  We get both flexibility and 
speed!

• VM = indirection between apps and actual 
memory

Flexibility: process can be moved in memory as it executes, 
run partially in memory and on disk, …

Simplicity: drastically simplifies applications

Efficiency:  most of a process’s memory will be idle (80/20 
rule)

• Challenge: Speed of MMU?
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Our main questions

• How is  protection enforced?

• How are processes reolcated?

• How is memory partitioned?



Simple idea 1: load-time linking

• Link as usual, but keep the list of references

• At load time, determine where processes will reside 
in memory and adjust all references (using addition)

• Prob 1:  protection?

• Prob 2:  how to move in memory?  (Consider: data pointers)

• Prob 3: more than one segment?
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Simple idea 2: base + bound register
• Use hardware to solve problem: on every load and 

store
relocation: physical addr = virtual addr + base register
protection: check that address falls in [base, base+bound)

When process runs, base register = 0x3000, bounds register = 
0x6000. Jump addr = 0x2000+0x3000=0x5000

How to move process in memory?  What happens on process 
switch?
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Some terminology
• Definitions:

program addresses are called logical or virtual addresses

actual addresses are called  physical or real addresses

• Translation (or relocation) mechanism: MMU

Each load and store supplied virtual address translated to real 
address by MMU (memory management unit)

All other mechanisms for dynamic relocation use a similar 
organization. All lead to multiple (per process) view of memory, 
called address spaces

CPU MMU

logical addrs

memory

Physical 
addrs



Protection mechanics
• How to prevent users from changing base/bound register?

• General mechanism: privileged instructions
OS runs in privileged mode (set a bit in process status word)

application processes run in user mode

Certain instructions can only be issued in privileged mode

(checked by hardware:  illegal instruction trap)

• How to switch?  (“usually” how its done, many variations)
User->OS:  application issues a system call, hardware then:

sets program counter to known address (can’t trust user to)

updates process status word

and disables relocation (OS has different address space)

OS-> User:

sets base and bounds register (recall: relocation off)

issues an instruction that simultaneously (1) sets pc to given address,

(2) turns relocation back on, and (3) lowers privilege



Base & bound tradeoffs
• Pro:

Cheap in terms of hardware: only two registers

Cheap in terms of cycles: do add and compare in parallel

Examples:  Cray-1

• Con: only one segment
prob 1:  growing processes

How to expand gcc?

prob 2:  how to share code and data??

how can copies of “vi” share code?

prob 3:  how to separate code and data?

• A solution: multiple segments
“segmentation”
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Segmentation
• Big idea: let processes have many base & bound ranges

Process address space built from multiple “segments”. Each has its 
own base & bound values.  Since we can now share, add 
protection bits for r/w

• Problem: how to specify what segment address refers 
to?

gcc

Text seg
r/o

Stack seg
r/w

0x1000

0x3000

0x5000

0x6000

Real memory

0x2000

0x8000

0x6000
Base&bound?



Segmentation Mechanics
• Each process has an array of its segments (segment table)

• Each memory reference indicates a segment and offset:
Top bits of addr select segment, low bits select offset (PDP-10)

Segment selected by instruction, or operand (Intel)

Virtual addr

Seg# offset

3 128

Seg table

Prot   base     len

r   0x1000   512
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Segmentation example

• 2-bit segment number (1st digit), 12 bit offset (last 3)

• Where is 0x0240?

• 0x1108?

• 0x265c?

• 0x3002?

• 0x1600?

Seg base    bounds  rw
0    0x4000   0x6ff   10
1     0x0000   0x4ff   11
2    0x3000   0xfff    11
3                               00  
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Segmentation Tradeoffs

• Pro:
Multiple segments per process

Allows sharing!  (how?)

Don’t need entire process in memory!!

• Con:

Extra layer of translation

speed = hardware support

An “n” byte segment requires n *contiguous* bytes of 
physical memory. (why?) Makes fragmentation a real 
problem.
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Fragmentation
• “The inability to use memory that is free”.

• Over  time:

variable-sized pieces = many small holes (external frag)

fixed-sized pieces = no external holes, but force internal 
waste (internal fragmentation)
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Page based virtual memory
• Quantize memory into fixed sized pieces (“pages”)

• Tradeoff
pro: eliminates external fragmentation

pro: simplifies allocation, free and swapping

con:  internal fragmentation (~.5 page per “segment”)
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Page-based mechanics
memory is divided into chunks of the same size (pages)

each process has a table (“page table”) that maps virtual 
page numbers to corresponding physical page numbers
• PT entry also includes protection bits (r, w, valid)

translation process: virtual page number extracted from 
an address’s upper bits and used as table index.

Virtual addr

VPN page offset
(12 bits)

3 128

Page table

Prot   VPN     PPN

r   3 1
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Page-based translation example
• MIPS R2000:  32 bit addr space, 20-bit VPN and 12-bit 

offset:
Page number page offset

20 bits 12 bits

/* partial page table entry */
struct pte { unsigned ppn:20, valid:1, writeable:1…; };

/* given virtual address and r/w indication, return physical 
addr. Uses a simple “direct” page table (I.e., an array) with 
(conceptually) an entry for every possible vpn */

unsigned xlate(unsigned va, int wr) {
struct pte *pte = &page_table[va >> 12];  
if(!pte->valid || (wr && !pte->writeable))  

raise address_fault;
return (pte->ppn << 12) | (va & 0xfff);   }



Page tables vs segmentation

• Good:
– Easy to allocate: keep a free list of available pages 

and grab the first one

– Easy to swap since everything is the same size and 
since pages usually same size as disk blocks

• Bad:
– size: PTs need one entry for each page-sized unit 

of virtual memory, vs one entry for every 
contiguous range
• e.g., given a range [0x0000, 0xffff] need one segment 

descriptor but, assuming 4K pages, 16 page table 
entries



Page size tradeoffs

• Small page = large page-table overhead
32-bit address space with 1k pages. How big PT?

• Large page = internal fragmentation
Most UNIX processes have few segments (code, data, stack, 

heap) so not much of a problem

But more expensive disk transfers, poorer (cache) locality

page size

More



Virtual memory summary
• VM gives

Flexibility + protection + speed (if clever)

• Base & bounds = simple relocation+protection
Pro: simple, fast
Con: inflexible

• Segmentation = generalization of base & bounds
Pro: Gives more flexible sharing and space usage
Con: segments need contiguous physical memory ranges

• Paging: instead of using extents, use fixed size units
Quantize memory into pages & use (page) table to map 

virtual to physical pages
Pro: eliminates external fragmentation; flexible mappings
Con: internal frag; mapping contiguous ranges more costly


