CSL373: Operating Systems
Virtual Memory

Lecture overview

e Virtual memory

Maps virtual addresses to physical pages & disk
blocks.

Like processes, a well-proven OS abstraction: ~40
years old

Today: what it’s good for, how to build one

* Readings: Silberschatz Chapter 8

Problem: we want processes to co-

exist

* Consider a primitive system running three

processes in physical memory:

OS

gcc

bochs

emacs

0x9000
O0x7000
0x4000

0x3000
0x0000

What happens if bochs wants to expand?

If emacs needs more memory than is on the machine??
If bochs has an error and writes to address 0x71007?
When does gcc have to know it will run at 0x40007?
What if emacs isn’t using its memory?

Issues in sharing physical memory

* Protection: errors in one process should only affect it

all systems conceptually: record process’s legal address range(s),
heck that each load and store only references a local address

Translation box (MMU) Physi

legal addr?lqgdress | Physical
Tllegal? memory
TSN

s SN
C_ g

* Transparency: a process should be able to run
regardless of its location in or the size of physical
memory

Give each process a large, static “fake” address space; as process
runs, relocate each load and store to its actual memory

Load| Store

Clever? We get both flexibility and

speed!
* VM = indirection between apps and actual

memory

Flexibility: process can be moved in memory as it executes,
run partially in memory and on disk, ...

Simplicity: drastically simplifies applications

Efficiency: most of a process’s memory will be idle (80/20

rule)
busy | idle —
_ N
gcc Vi

* Challenge: Speed of MMU?

MMU

=)

EEON

ECOEN
ECOEN

HEE B O

Physical Mem

=

Disk
(swap space)

Our main questions

* How is protection enforced?

* How are processes reolcated?

* How is memory partitioned?

Simple idea 1: load-time linking

* Link as usual, but keep the list of references

* At load time, determine where processes will reside

in memory and adjust all references (usin

static a..out

0x3000

Ijump 0x2000

* Prob 1: protection?

0x1000

o addition)
OS
0x6000
a.out’
Jjump Ox5000
0x4000

* Prob 2: how to move in memory? (Consider: data pointers)

* Prob 3: more than one segment?

Simple idea 2: base + bound register

* Use hardware to solve problem: on every load and
store

relocation: physical addr = virtual addr + base register
protection: check that address falls in [base, base+bound)

oS
a..out
0x3000 0x6000
a.out
—
: jump 0x2000
Ijump 0x2000 o0 0x4000
X

When process runs, base register = 0x3000, bounds register =
0x6000. Jump addr = 0x2000+0x3000=0x5000

How to move process in memory? What happens on process
switch?

Some terminology

* Definitions:
program addresses are called logical or virtual addresses
actual addresses are called physical or real addresses

* Translation (or relocation) mechanism: MMU

Physical
logical addrs addrs
1 1 memory
cU [——| mmu | g

Each load and store supplied virtual address translated to real
address by MMU (memory management unit)

All other mechanisms for dynamic relocation use a similar
organization. All lead to multiple (per process) view of memory,
called address spaces

Protection mechanics

* How to prevent users from changing base/bound register?

* General mechanism: privileged instructions

OS runs in privileged mode (set a bit in process status word)
application processes run in user mode

Certain instructions can only be issued in privileged mode
(checked by hardware: illegal instruction trap)

 How to switch? (“usually” how its done, many variations)
User->0S: application issues a system call, hardware then:
sets program counter to known address (can’t trust user to)
updates process status word
and disables relocation (OS has different address space)
OS-> User:
sets base and bounds register (recall: relocation off)
issues an instruction that simultaneously (1) sets pc to given address,
(2) turns relocation back on, and (3) lowers privilege

Base & bound tradeoffs

* Pro:
Cheap in terms of hardware: only two registers
Cheap in terms of cycles: do add and compare in parallel
Examples: Cray-1

* Con: onIy one segment
prob 1: growing processes
How to expand gcc?
prob 2: how to share code and data??
how can copies of “vi” share code?| Free space

prob 3: how to separate code and data? _

* A solution: multiple segments gee
“segmentation”

vim2

Segmentation

* Bigidea: let processes have many base & bound ranges

Process address space built from multiple “segments”. Each has its
own base & bound values. Since we can now share, add
protection bits for r/w

Ox1000

0x3000

0x5000

0x6000

__gcc

Text seg
r/o

Stack seg

r/w

Base&bound?

Real memory

0x2000

0x8000

0x6000

* Problem: how to specify what segment address refers

to?

Segmentation Mechanics

» Each process has an array of its segments (segment table)

* Each memory reference indicates a segment and offset:

Top bits of addr select segment, low bits select offset (PDP-10)
Segment selected by instruction, or operand (Intel)

Virtual addr

Seg# \offset

Seg table

no
5 yes

Prot] base |

F

[loxio00

fault

+

512

0x1000

mem

seg

1128

Segmentation example

2-bit segment number (1t digit), 12 bit offset (last 3)

Seg base bounds rw

O 0x4000 Oxé6ff 10
1 0Ox0000 Ox4ff 11
2 0x3000 Oxfff 11

3 Q0 |
Where is 0x0240°?

0x1108?
0x265c¢?
0x30027
0x16007?

logical physical

0x4000 | .. 0x4700......,

0x3000 | ... 0x4000.......
....... 2 ’.‘..2.999........4 rereren 0X3000.......

0x0000

Segmentation Tradeoffs

* Pro:
Multiple segments per process
Allows sharing! (how?) gee
Don’t need entire process in memory!!
| where?
* Con: ‘ g | " [emacs

Extra layer of translation
speed = hardware support

An “n” byte segment requires n *contiguous™ bytes of
physical memory. (why?) Makes fragmentation a real
problem.

e Qver time:

Fragmentation

* “The inability to use memory that is free”.

variable-sized pieces = many small holes (external frag)
fixed-sized pieces = no external holes, but force internal

waste (internal fragmentation)

bochs

allocated

??

[L]

- External
gcc 7fr'agmen‘l'aﬁon
emacs
Unused

T stk
_doom

} (“internal

fragmentation”)

Page based virtual memory

e Quantize memory into fixed sized pieces (“pages”)

Pages />J
typical: 4k-8k gcc
emacs \infernal frag
v
* Tradeoff |

pro: eliminates external fragmentation
pro: simplifies allocation, free and swapping
con: internal fragmentation (~.5 page per “segment”)

Page-based mechanics
memory is divided into chunks of the same size (pages)

each process has a table (“page table”) that maps virtual
page numbers to corresponding physical page numbers
* PT entry also includes protection bits (r, w, valid)

translation process: virtual page number extracted from
an address’s upper bits and used as table index.

Virtual addr

.| ((1«<12)|128)

VP page offset Page table

(12 bits)
5 |Prof]l VPN |PPN
fault '
“invalid"
- Ir' 3 1

PPN

0x1000

mem

seg

1128

Page-based translation example

 MIPS R2000: 32 bit addr space, 20-bit VPN and 12-bit
offset:

| Page number | page of fset |
20 bits 12 bits

/* partial page table entry */
struct pte { unsigned ppn:20, valid:1, writeable:1...; };

/* given virtual address and r/w indication, return physical
addr. Uses a simple "direct” page table (I.e., an array) with
(conceptually) an entry for every possible vpn */

unsigned xlate(unsigned va, int wr) {

struct pte *pte = &page_table[va > 12];

if(Ipte->valid || (wr && Ipte->writeable))
raise address_fault;

return (pte->ppn <« 12) | (va & Oxfff); }

Page tables vs segmentation
* Good:

— Easy to allocate: keep a free list of available pages
and grab the first one

— Easy to swap since everything is the same size and
since pages usually same size as disk blocks

 Bad:

— size: PTs need one entry for each page-sized unit
of virtual memory, vs one entry for every
contiguous range

e e.g., given a range [0x0000, Oxffff] need one segment

descriptor but, assuming 4K pages, 16 page table
entries

Page size tradeoffs

Overhead Internal

More writeback cost

locality

page size

 Small page = large page-table overhead
32-bit address space with 1k pages. How big PT?

e Large page = internal fragmentation

Most UNIX processes have few segments (code, data, stack,
heap) so not much of a problem

But more expensive disk transfers, poorer (cache) locality

Virtual memory summary
VM gives

Flexibility + protection + speed (if clever)

Base & bounds = simple relocation+protection
Pro: simple, fast

Con: inflexible
Segmentation = generalization of base & bounds

Pro: Gives more flexible sharing and space usage
Con: segments need contiguous physical memory ranges

Paging: instead of using extents, use fixed size units

Quantize memory into pages & use (page) table to map
virtual to physical pages

Pro: eliminates external fragmentation; flexible mappings
Con: internal frag; mapping contiguous ranges more costly

