
CSL373: Operating Systems
Virtual Memory

Lecture overview

• Virtual memory
Maps virtual addresses to physical pages & disk

blocks.

Like processes, a well-proven OS abstraction: ~40
years old

Today: what it’s good for, how to build one

• Readings: Silberschatz Chapter 8

Problem: we want processes to co-
exist

• Consider a primitive system running three
processes in physical memory:

• What happens if bochs wants to expand?

• If emacs needs more memory than is on the machine??

• If bochs has an error and writes to address 0x7100?

• When does gcc have to know it will run at 0x4000?

• What if emacs isn’t using its memory?

OS

bochs

gcc

emacs 0x0000

0x4000

0x3000

0x7000

0x9000

Issues in sharing physical memory
• Protection: errors in one process should only affect it

all systems conceptually: record process’s legal address range(s),
check that each load and store only references a local address

• Transparency: a process should be able to run
regardless of its location in or the size of physical
memory

Give each process a large, static “fake” address space; as process
runs, relocate each load and store to its actual memory

gcc

virtual
addressCPU

Load Store legal addr?
Illegal?

Physical
address Physical

memory

fault

data

Translation box (MMU)

Clever? We get both flexibility and
speed!

• VM = indirection between apps and actual
memory

Flexibility: process can be moved in memory as it executes,
run partially in memory and on disk, …

Simplicity: drastically simplifies applications

Efficiency: most of a process’s memory will be idle (80/20
rule)

• Challenge: Speed of MMU?

gcc vi

busy idle
MMU

Physical Mem
Disk

(swap space)

Our main questions

• How is protection enforced?

• How are processes reolcated?

• How is memory partitioned?

Simple idea 1: load-time linking

• Link as usual, but keep the list of references

• At load time, determine where processes will reside
in memory and adjust all references (using addition)

• Prob 1: protection?

• Prob 2: how to move in memory? (Consider: data pointers)

• Prob 3: more than one segment?

0x1000

static a..out
0x3000

0x4000

OS

a.out’

jump 0x2000
jump 0x5000

0x6000

Simple idea 2: base + bound register
• Use hardware to solve problem: on every load and

store
relocation: physical addr = virtual addr + base register
protection: check that address falls in [base, base+bound)

When process runs, base register = 0x3000, bounds register =
0x6000. Jump addr = 0x2000+0x3000=0x5000

How to move process in memory? What happens on process
switch?

0x1000

a..out
0x3000

0x4000

OS

a.out

jump 0x2000
jump 0x2000

0x6000

Some terminology
• Definitions:

program addresses are called logical or virtual addresses

actual addresses are called physical or real addresses

• Translation (or relocation) mechanism: MMU

Each load and store supplied virtual address translated to real
address by MMU (memory management unit)

All other mechanisms for dynamic relocation use a similar
organization. All lead to multiple (per process) view of memory,
called address spaces

CPU MMU

logical addrs

memory

Physical
addrs

Protection mechanics
• How to prevent users from changing base/bound register?

• General mechanism: privileged instructions
OS runs in privileged mode (set a bit in process status word)

application processes run in user mode

Certain instructions can only be issued in privileged mode

(checked by hardware: illegal instruction trap)

• How to switch? (“usually” how its done, many variations)
User->OS: application issues a system call, hardware then:

sets program counter to known address (can’t trust user to)

updates process status word

and disables relocation (OS has different address space)

OS-> User:

sets base and bounds register (recall: relocation off)

issues an instruction that simultaneously (1) sets pc to given address,

(2) turns relocation back on, and (3) lowers privilege

Base & bound tradeoffs
• Pro:

Cheap in terms of hardware: only two registers

Cheap in terms of cycles: do add and compare in parallel

Examples: Cray-1

• Con: only one segment
prob 1: growing processes

How to expand gcc?

prob 2: how to share code and data??

how can copies of “vi” share code?

prob 3: how to separate code and data?

• A solution: multiple segments
“segmentation”

gcc

p2

Free space

p3

gcc

vim1

vim2

Segmentation
• Big idea: let processes have many base & bound ranges

Process address space built from multiple “segments”. Each has its
own base & bound values. Since we can now share, add
protection bits for r/w

• Problem: how to specify what segment address refers
to?

gcc

Text seg
r/o

Stack seg
r/w

0x1000

0x3000

0x5000

0x6000

Real memory

0x2000

0x8000

0x6000
Base&bound?

Segmentation Mechanics
• Each process has an array of its segments (segment table)

• Each memory reference indicates a segment and offset:
Top bits of addr select segment, low bits select offset (PDP-10)

Segment selected by instruction, or operand (Intel)

Virtual addr

Seg# offset

3 128

Seg table

Prot base len

r 0x1000 512

mem

seg
128

+ 0x1000? yes
no

fault

Segmentation example

• 2-bit segment number (1st digit), 12 bit offset (last 3)

• Where is 0x0240?

• 0x1108?

• 0x265c?

• 0x3002?

• 0x1600?

Seg base bounds rw
0 0x4000 0x6ff 10
1 0x0000 0x4ff 11
2 0x3000 0xfff 11
3 00

0x4000

0x3000

0x2000

0x1500

0x1000
0x0700

0x0000

logical physical

0x4700

0x4000

0x3000

0x500

0x0

Segmentation Tradeoffs

• Pro:
Multiple segments per process

Allows sharing! (how?)

Don’t need entire process in memory!!

• Con:

Extra layer of translation

speed = hardware support

An “n” byte segment requires n *contiguous* bytes of
physical memory. (why?) Makes fragmentation a real
problem.

emacs

gcc

gcc’
where?

Fragmentation
• “The inability to use memory that is free”.

• Over time:

variable-sized pieces = many small holes (external frag)

fixed-sized pieces = no external holes, but force internal
waste (internal fragmentation)

gcc

emacs

doom

stack
allocated

Unused
(“internal
fragmentation”)

External
fragmentationbochs ??

Page based virtual memory
• Quantize memory into fixed sized pieces (“pages”)

• Tradeoff
pro: eliminates external fragmentation

pro: simplifies allocation, free and swapping

con: internal fragmentation (~.5 page per “segment”)

gcc

emacs internal frag

Pages
typical: 4k-8k

Page-based mechanics
memory is divided into chunks of the same size (pages)

each process has a table (“page table”) that maps virtual
page numbers to corresponding physical page numbers
• PT entry also includes protection bits (r, w, valid)

translation process: virtual page number extracted from
an address’s upper bits and used as table index.

Virtual addr

VPN page offset
(12 bits)

3 128

Page table

Prot VPN PPN

r 3 1

mem

seg
128

0x1000

?fault

“invalid”

PPN

((1<<12)|128)

Page-based translation example
• MIPS R2000: 32 bit addr space, 20-bit VPN and 12-bit

offset:
Page number page offset

20 bits 12 bits

/* partial page table entry */
struct pte { unsigned ppn:20, valid:1, writeable:1…; };

/* given virtual address and r/w indication, return physical
addr. Uses a simple “direct” page table (I.e., an array) with
(conceptually) an entry for every possible vpn */

unsigned xlate(unsigned va, int wr) {
struct pte *pte = &page_table[va >> 12];
if(!pte->valid || (wr && !pte->writeable))

raise address_fault;
return (pte->ppn << 12) | (va & 0xfff); }

Page tables vs segmentation

• Good:
– Easy to allocate: keep a free list of available pages

and grab the first one

– Easy to swap since everything is the same size and
since pages usually same size as disk blocks

• Bad:
– size: PTs need one entry for each page-sized unit

of virtual memory, vs one entry for every
contiguous range
• e.g., given a range [0x0000, 0xffff] need one segment

descriptor but, assuming 4K pages, 16 page table
entries

Page size tradeoffs

• Small page = large page-table overhead
32-bit address space with 1k pages. How big PT?

• Large page = internal fragmentation
Most UNIX processes have few segments (code, data, stack,

heap) so not much of a problem

But more expensive disk transfers, poorer (cache) locality

page size

More

Virtual memory summary
• VM gives

Flexibility + protection + speed (if clever)

• Base & bounds = simple relocation+protection
Pro: simple, fast
Con: inflexible

• Segmentation = generalization of base & bounds
Pro: Gives more flexible sharing and space usage
Con: segments need contiguous physical memory ranges

• Paging: instead of using extents, use fixed size units
Quantize memory into pages & use (page) table to map

virtual to physical pages
Pro: eliminates external fragmentation; flexible mappings
Con: internal frag; mapping contiguous ranges more costly

