CSL373: Lecture 7
Advanced Scheduling

Today

Multi-level feedback in the real world
e UNIX

Lottery scheduling:

Clever use of randomness to get simplicity

Retro-perspectives on scheduling

Reading: Chapter 5

Scheduling Review

 FIFO: run in arrival order, until exit or block
run C(dd

+ simple IR

- Short jobs get stuck behind long ones; poor I/O
* RR: runin cycle, until exit, block or time slice

+ better for short jobs
- poor when jobs are the same length

e STCF: run shortest jobs first de
run

+ optimal (avg. response time, avg. time-to-completion)
- Hard to predict the future. Unfair. Possible starvation

Understanding scheduling

* You add the nth process to the system

When will it run at ~1/n of speed of CPU?
>1/n?

<1/n? ED--DD,

n
* Scheduling in real world

Where RR used? FIFO? SJF? Hybrids?

Why so much FIFO?

When priorities?

Time slicing? What’s common cswitch overhead?
Real world scheduling not covered by RR, FIFO, STCF?

Multi-level UNIX (SysV, BSD)

Priorities go from 0..127 (0 = highest priority)
32 run queues, 4 priority levels each

Run highest priority job always (even if just ran)
Favor jobs that haven’t run recently

Multi-level in real world: Unix SVR3

* Keep history of recent CPU usage for each process

Give highest priority to process that has used the least CPU time
“recently”

* Every process has two fields:

* p_cpu field to track usage
e usr_pri field to track priority (lower value => higher priority)

e Every clock tick (how frequent?)
Increment current job’sp _cpuby 1

* Every second, recompute every job’s priority and usage
p cpu=p cpu/?2 (escape tyranny of past!)
P_priority = p_cpu/4 + PUSER + 2*nice

 What happens:

To interactive jobs? CPU jobs? Under high system load?

Some UNIX scheduling problems

* How does the priority scheme scale with
number of processes?

* How to give a process a given percentage of
CPU?

Lottery scheduling: random simplicity

* Problem: this whole priority thing is really ad
hoc.

How to ensure that processes will be equally penalized
under load? That system doesn’t have a bad case
where most processes suffer?

* Lottery scheduling! Dirt simple:

Give each process some number of tickets
Each scheduling event, randomly pick ticket
Run winning process

to give P n% of CPU, give it (total tickets) * n%

* How to use?
Approximate priority: low-priority, give few tickets, high-
priority give many

Approximate STCF: give short jobs more tickets, long jobs
fewer. Key: If job has at least 1, will not starve

Grace under load change

* Add or delete jobs (and their tickets):
Affect all proportionally

* Example: give all jobs 1/n of cpu?
4 jobs, 1 ticket each

[T 1] [1] [

each gets (on average) 25% of CPU.
Delete one job:

automatically adjusts to 33% of CPU!

* Easy priority donation:
Donate tickets to process you’re waiting on.
Its CPU% scales with tickets on all waiters.

Changing Assumptions

Real time: processes are not time insensitive
missed deadline = incorrect behavior
soft real time: display video frame every 30t of sec
hard real time: “apply-breaks” process in your car

Scheduling more than one thing:
memory, network bandwidth, CPU all at once
Distributed systems: System not contained in 1 room:

How to track load in system of 1000 nodes?

Migrate jobs from one node to another? Migration cost non-
trivial: must be factored into scheduling

So far: assumed past = one process invocation
gcc behaves pretty much the same from run to run.
Research: How to exploit?

A less simplistic view of context
switching

* Brute cswitch cost:
saving and restoring: registers, control block, page table, ...

* Less obvious: lose cache(s). Can give 2-10x
slowdown

[P [P]

CPU
cache

Another CPU

—.>
(or over time

O0|lomoo

0008

o000

OE
u|n[n]n]|[=]=]=]=
o000

uju]m

File/Page
cache

Context switch cost aware scheduling

* Two level scheduling:

If process swapped out to disk, then “context-switching” very
very expensive: must fault in many pages from disk.

One disk access costs ~10ms. On 500Mhz machine, 10ms =5
million cycles!

So run in core subset for “a while”, then move some between
disk and memory. (How to pick subset?)

* Multi-processor: processor affinity
given choice, run process on processor last ran on

Parallel systems: gang scheduling

* N independent processes: load-balance
run process on next CPU (with some affinity)

I=
/T\»

ol G - oo

* N cooperating processes: run at same time

cluster into groups, schedule - - - -
as unit l -
-

can be much faster

Share caches

No context switching to cpul
communicate

Distributed system load balancing

e Large system of independent nodes

%a%ia o,

 Want: run job on lightly loaded node
Querying each node too expensive
e |nstead randomly pick one
(used by lots of internet servers)
 Mitzenmacher: Then randomly pick one more!
Send job to shortest run queue

Result? Really close to optimal (with a few assumptions ;-)
Exponential convergence: picking 3 doesn’t get you much

The universality of scheduling

Used to let m requests share n resources
Issues same: fairness, prioritizing, optimization
Disk arm: which read/write request to do next?

Opt: close requests = faster
Fair: don’t starve far requests

Memory scheduling: who to take page from?
Opt: past=future? Take away from least-recently-used
Fair: equal share of memory

Printer: what job to print?

People = fairness paramount: uses FIFO rather than SJF.
“admission control” to combat long jobs

Unfair = speed

* Unfair in scheduling
STCF: *must™* be unfair to be optimal
Favor I/O jobs? Penalize CPU. Other way, devices idle

Favor recent jobs over older ones = better cache
performance

* LRU cache replacement

Rather than give each process 1/nth of cache, evict most
useless entries.

* Traffic light:

Rather than RR at the car granularity (fair), coarsen, and
schedule at the lane granularity. Reduces “context
switch” overhead, but may make recent cars wait

Adaptation = speed

Multilevel feedback is an “adaptive” technique
system feedback = better decisions at static policies
Why? more information = better decisions = speed

Lock acquisition:

using dynamic information lets us get within 2x of
optimal

Ethernet transmission

Sending a message on a busy ethernet causes collision

Rather than wait fixed amount, backoff randomly and
retry. If collide again, backoff further, repeat

Buffer cache replacement:

eject least-recently-used (LRU) memory page rather
than give each process 1/n of memory

How to allocate resources?

(’rzr")r{\)inals (seats, (di;k bel;)cks,
disk a;“m profs Cacﬁg bllocks)
" locks) rooms)
Ime

sharing

Space sharing

e Space sharing (sometimes): split up. When to stop?
* Time-sharing (always): how long do you give out piece?

Pre-emptible (CPU, memory) vs non-preemptible (locks, files,
terminals)

Postscript

* |n principle, scheduling decisions can be arbitrary
since the system should produce the same results

In any event
Good: rare that “the best” process can be calculated

* Unfortunately, algorithms have strong effects on
system’s overhead, efficiency and response time

* The best schemes are adaptive. To do absolutely
best we’d have to predict the future.

Scheduling has gotten *increasingly* ad hoc over the
years. 1960s papers very math heavy, now mostly

“tweak and see”

Event-Driven vs. Shared Memory
Or
Multiprocessing vs. Multithreading

ATM Bank Server

Oononon
Oononon
Oononon

i

A
L 7
:A —
Oooa]
Oooa
| ccc
— l\
A\
J 4
[
——
Oooa
Oooa
| ccc
I

Oononon
Oononon
Oononon

« ATM server problem: I

— Service a set of requests
— Do so without corrupting database
— Don’t hand out too much money

ATM bank server example

* Suppose we wanted to implement a server process
to handle requests from an ATM network:

RankServer () {

while (TRUE) ({
ReceiveRequest (&op, &acctld, &amount);

ProcessRequest (op, acctld, amount);

}
}

ProcessRequest (op, acctld, amount) {
1f (op == deposit) Deposit(acctId, amount);

else 1f ..

}

Deposit (acctId, amount) {
acct = GetAccount (acctId); /* may use disk I/O */

acct->balance += amount;
StoreAccount (acct); /* Involves disk I/0 */

)
 How could we speed this up?

— More than one request being processed at once

— Event driven (overlap computation and |/O)

— Multiple threads (multi-proc, or overlap comp and 1/0)

Event Driven Version of ATM server
e Suppose we only had one CPU
— Still like to overlap I/O with computation

— Without threads, we would have to rewrite in event-
driven style

 Example

BankServer () {
while (TRUE) {
event = WaitForNextEvent () ;
1f (event == ATMRequest)
StartOnRequest () ;
else 1f (event == AcctAvail)
ContinueRequest () ;
else 1if (event == AcctStored)
} FinishRequest () ;
}

— What if we missed a blocking I/O step?

— What if we have to split code into hundreds of
pieces which could be blocking?

— This technique is used for graphical programming

Can Threads Make This Easier?

* Threads yield overlapped I/O and computation without
“deconstructing” code into non-blocking fragments
— One thread per request

* Requests proceeds to completion, blocking as required:

Deposit (acctId, amount) {

acct = GetAccount (actId); /* May use disk I/0 */
acct->balance += amount;
StoreAccount (acct) ;

}

* Unfortunately, shared state is complicated too!

Thread 1 Thread 2
load rl, acct->balance

/* Involves disk I/0 */

load rl, acct->balance
add rl, amount?

store rl, acct->balance
add rl, amountl

store rl, acct->balance

