
CSL373: Lecture 6
CPU Scheduling

First come first served (FCFS or FIFO)

• Simplest scheduling algorithm
Run jobs in order that they arrive

Disadvantage: wait time depends on arrival order. Unfair
to later jobs (worst case: long job arrives first)

e.g.,: three jobs (A, B, C) arrive nearly simultaneously)

what’s the average completion time?

and now?

Job a
Job

c
Job bcpu

100 units 2 1

time

Job a
Job

c
Job bcpu

100 units21

time

103

103

0

0

FCFS and I/O utilization
• A CPU bound job will hold CPU until done, or it

causes an I/O burst (rare occurrence, since the
thread is CPU-bound) aka convoy effect

• Iong periods where no I/O requests issued, and CPU held
• Result: poor I/O device utilization

• Example: one CPU bound job, many I/O bound
CPU bound runs (I/O devices idle)
CPU bound blocks
I/O bound job(s) run, quickly block on I/O
CPU bound runs again
I/O completes
CPU bound still runs while I/O devices idle (continues…)

Possible solution: run process whose I/O completed?
Will it always work?

Round robin (RR)

• Solution to job monopolizing CPU? Interrupt
it.

Run job on some “time slice”, when time is up, or it
blocks, move it to back of a FIFO queue

Most systems do some flavor of this

• Advantage:
• fair allocation of CPU across jobs

• low average waiting time when job lengths vary:

What is the avg completion time?

Job a
Job

c
Job

b
cpu

98 units11

time

Job
a

Job
b

1 1
Job

a

1

1030

Round Robin’s Big Disadvantage

• Varying sized jobs are good, but what about
same-sized jobs? Assume 2 jobs of time=100
each:

Avg completion time?

How does this compare with FCFS for same two
jobs?

1 2 3 4 5 199 200
cpu ABA B B BA A A

RR Time slice tradeoffs

• Performance depends on length of the timeslice
Context switching is not a free operation.
If time slice is set too high (attempting to amortize context

switch cost), you get FCFS. (i.e., processes will finish or
block before their slice is up anyway)

If it’s set too low, you’re spending all of your time context
switching between threads.

Timeslice frequently set to ≈100 milliseconds
Context switches typically cost < 1 millisecond

Moral: context switching is usually negligible (< 1% per
timeslice in above example) unless you context switch too
frequently and lose all productivity.

Priority scheduling

• Obvious: not all jobs equal
So: rank them.

• Each process has a priority
Run highest priority ready job in system round robin among

processes of equal priority

Priorities can be static or dynamic (Or both: Unix)

Most systems use some variant of this

• Common use: couple priority to job characteristic
Fight starvation? Increase priority as time spent in ready queue

Keep I/O busy? Increase priority for jobs that often block on I/O

• Priorities can create deadlock.
Fact: high priority always runs over low priority

So?

Handling thread dependencies

• Priority inversion e.g., T1 at high priority, T2 at
low

T2 acquires lock L

Scene 1: T1 tries to acquire L, fails, spins. T2 never gets to run

Scene 2: T1 tries to acquire L, fails, blocks. T3 enters system a
medium priority. T2 never gets to run.

• Scheduling = deciding who should make progress
Obvious: a thread’s importance should increase with the

importance of those that depend on it.

Naïve priority schemes violate this

• “Priority donation”
Thread’s priority scales with priority of dependent threads

Shortest time to completion first
(STCF)

• STCF (or shortest-job-first)
run whatever job has least amount of stuff to do.
can be pre-emptive or non-preemptive.

• Example: same jobs (given jobs A, B, C)
Average completion = (1 + 3 + 103)/3 ≈ 35 (vs ≈100 for FCFS)

• Provable optimal: moving shorter job before
longer job improves waiting time for short job
more than harms the waiting time for long job.
Try the proof yourself.

Job a
Job

c
Job bcpu

100 units21

time

How to know job length?

• Have user tell us. If they lie, kill the job
Not so useful in practice

• Use the past to predict the future #1:
Long running job will probably take a long time more

• Use the past to predict the future #2:
View job as sequence of sequentially alternating CPU and I/O

jobs

If previous CPU jobs in the sequence have run quickly, future
ones will too (“usually”)

gcc
Sample

emacsemacs

Approximate STCF

• ~STCF: predict length of current CPU burst
using length of previous burst

Record length of previous burst (0 when just created)

At scheduling event (unblock, block, exit, …) pick smallest
“past run length” off of ready queue.

19 10 3 1
pick

100

19 10 3 100
pick

9

19 10 9 100
pick

2

time

Elevator in Bharti Bldg.

• To choose direction:

– Uses FCFS

• In each direction:

– Follows STCF

Disk drive head

• A disk drive receives many r/w requests for different
sectors simultaneously.

• Disk organized as concentric circles (called cylinders).
• The disk rotates around the center
• The disk head positions itself appropriately to read the

requested sector. This positioning is also called “disk
seek” and the time taken, “seek time”

Requested sectors:
231, 245, 636, 354

Disk drive (STCF in action)

• Disk can predict length of next “job”!
– Job = request to disk

– Job length ≈ cost of moving disk arm to position of the
requested disk block. (Farther away = more costly.)

• STCF for disks: shortest-seek-time-first (SSTF)
• Do read/write request closest to current position

• Preemptive: if new jobs arrive that can be serviced on the way, do
these too.

• However, do not change direction (just like an elevator). Hence,
also called “elevator algorithm”

• Elevator algorithm:
– Disk arm has direction, do closest request in that direction.

Sweeps from one end to other

~STCF vs RR

• Three processes P1, P2, P3

– 100 ms time slice.

running

10ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms

P1

10ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms

P2

P3

blocked

~STCF vs RR
• RR:

Problem: Long periods of idle I/O

• ~STCF

Problem: Full I/O utilization, but P3 gets starved!

P1 P2 P3

I/O idleI/O busy

10ms 10ms 100ms 10ms 10ms

I/O busy

10ms 10ms

Generalizing: priorities + history

• ~STCF good core idea but doesn’t have enough state
The usual STCF problem: starvation
Solution: compute priority as a function of both CPU time P

has consumed and time since P last ran

• Multi-level feedback queue (or exponential Q)
Priority scheme where adjust priorities to penalize CPU

intensive programs and favor I/O intensive
Pioneered by CTSS (MIT in 1962)
Implemented by you (or should have been)

priority

A simple multi-level feedback queue

• Attacks both efficiency and response time problems
Efficiency: long time quanta = low switching overhead

Response time: quickly run after becoming unblocked

• Priority queue organization: one ready queue for each
priority level

process created: give high priority and short time slice

if process uses up the time slice without blocking:

priority = priority – 1; time_slice = time_slice*2

priority

Some problems

• Can’t low priority threads starve?
• Ad hoc: when skipped over, increase priority

• What about when past doesn’t predict future?

– e.g., CPU bound switches to I/O bound

• Want past predictions to “age” and count less towards
current view of the world.

Summary

• FIFO
+ simple
- short jobs can get stuck behind long ones; poor I/O

• RR
+ better for short jobs; fair
- poor when jobs are the same length; I/O utilization not

optimal

• STCF
+ optimal (avg. response time, avg. time-to-completion)
- hard to predict future (hence, use ~STCF)
- Possibility of starvation

• Multi-level feedback
+ ~STCF
- unfair to long running jobs

