
CSL373: Lecture 5
Deadlocks (no process runnable)

+
Scheduling (> 1 process runnable)



Past & Present
• Have looked at two constraints:

Mutual exclusion constraint between two events is a 
requirement that they do not overlap in time

» Enforced using scheduling, locks, semaphores, monitors

Precedence constraint between two events is a requirement 
that one completes before the other

» (usually) enforced using scheduling or semaphores

• Synchronization primitive ordering:
Atomic instructions can implement locks, locks can implement 

semaphores (lock + integer counter) or monitors (one 
implicit lock), and vice versa (of course)

• Today:
• Deadlock: what to do when many threads = no progress

• Scheduling: what to do when many threads want progress



Deadlock

• Graphically, caused by a directed cycle in inter-
thread dependencies

e.g., T1 holds resource R1 and is waiting on R2, T2 holds 
R2 and is waiting on R1

e.g., r1 = disk, r2 = printer

No progress possible

Even simple cases can be non-trivial to diagnose
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An example

void p() {
l1->Acquire();
l2->Acquire();
<ops on shared state>
l2->Release();
l1->Release();

} 

void q() {
l2->Acquire();
l1->Acquire();
<ops on shared state>
l1->Release();
l2->Release();

} 

Lock l1, l2



Deadlock Prevention:  Eliminate one 
condition

• Problem: limited access
Solutions: Buy more resources, split into pieces, or split the usage of 

a resource temporally to make it appear “infinite” in number

• Problem: Non-preemption
Solution: create copies or virtualize
Threads: each thread has it’s own copy of registers = no lock
Physical memory:  virtualized with VM, can take physical page away 

and give to another process!

• Problem: Hold + wait
Solution: acquire resources “all at once”
(wait on many without locking any, must know all needed)

• Problem: Circularity
Possible Solutions:

Single lock for entire system:  (problems?)
Partial ordering of resources (next)



Partial orders:  simple deadlock control

• Order resources (lock1, lock2, …)

• Acquire resources in strictly increasing (or 
decreasing) order

• Intuition:
number all nodes in a graph

to form a cycle, there has to be at least one edge from 
high to low number (or to same node)
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What if you need to acquire locks in 
different orders?

• Use trylocks()

• If trylock fails, release all previously held locks 
and reacquire them in correct order. Need to 
make sure that the state is sane when 
releasing locks.

• Remember that on releasing and reacquiring 
locks, the state could have changed.



Example: out-of-order locks
//l1 protects d1, l2 protects d2. lock order: l1, l2
//decrements d2, and if the result is 0, increments d1
void increment() {

l2->acquire();
int t = d2;
t--;
if (t == 0) {

if (trylock(l1)) d1++;
else {

l2->release();
l1->acquire();   l2->acquire();
t = d2;       t--; //recheck  “t”
if (t == 0) d1++;

}
l1->Release();

}
d2 = t;
l2->Release();

} 



Two phase locking: simple deadlock 
control

• Acquire all resources, if block on any, release all 
and retry

print_file:
lock(file);
acquire  printer;
acquire  disk;
… do work …
release all

• Pro: dynamic, simple, flexible
• Con:

Cost with number of resources?
Length of critical section:
Abstraction breaking:  hard to know what’s needed a priori

If any acquire fails, release all previously
acquired. Could we do this this without
a priori knowledge of what’s needed?



Deadlock Detection

1: Work = Avail;

Finish[i] = False for all i;

2: Find i such that Finish[i] = False and Request[i] <= Work 
If no such i exists, goto 4

3: Work = Work + Alloc[i]; Finish[i] = True; goto 2

4: If Finish[i] = False for some i, system is deadlocked. 
Moreover, Finish[i] = False implies that process i is 
deadlocked.

When to run?



Detection + correction

• Terminate threads and release resources
Repeat until deadlock goes away

Con: Blowing away threads leaves system in what state?

Wild guess: probably not a sane state.

Stylized use: acquire all locks, then modify state. Can always blow 
away the thread if acquire fails (basically two-phase locking with 
thread termination)

• More fancy: roll back actions of deadlocked threads
• acquire locks however

• only modify state using invertible actions

• get stuck? System kills thread (“bad thread”) and inverts actions. 
Repeat as necessary

• Each thread now behaves like a “transaction” that would either 
complete in entirety or non at all (easy for programmer)

• Problem:  tracking actions,  constructing inverses (refer databases)



Dirty secret:  the most common 
schemes

• Prevention:  Test
Pro: no complex machinery. Everyone understands 

testing

Con:  interleavings = huge space.

• Kill app
Throw deadlock in the same box as infinite loops. Do 

what you usually do.

Works for some applications (emacs, gcc, …). Just rerun.

Con: not a valid solution for many applications 
(example?)



Concurrency Summary

• Concurrency errors:
One way to view: thread checks condition(s)/examines value(s) 

and continues with the implicit assumption that this result 
still holds while another thread modifies

• Fixes?
Rule 1:  don’t do concurrency (poor utilization or impossible)

Rule 2:  don’t share state (may be impossible)

Rule 3: If you violate 1 & 2, use one big lock [coarse-grain] 
(could lead to poor utilization, e.g., Linux on multi-core)

Last resort:  many locks (fine-grain: good parallelism but error 
prone).



Scheduling: what job to run?
• We’ll have three main goals (many others possible)

• minimize response/completion time
response time = what the user sees: elapsed time to echo keystroke 

to editor (acceptable delay around 50-100ms)

Completion time: start to finish of job

• Maximize throughput: operations(=jobs) per second
minimize overhead  (context switching)

efficient use of resources  (CPU,  disk,  cache,  …)

• Fairness:  share CPU “equitably”
Tension:  unfairness might imply better throughput or better 

response times
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When does scheduler make decisions?

• Non preemptive minimum:
When process voluntarily relinquishes CPU

» process blocks on an event (e.g., I/O or synchronization)

» process terminates

• Preemptive minimum
All of the above, plus:

Event completes:  process moves from blocked to ready

Timer interrupts

Priorities: One process can be interrupted in favor of 
another

running
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Can think of: I/O device = special CPU
• I/O device ≈ one special purpose CPU

“special purpose” = disk drive can only run a disk job, 
printer a print job, …

• Implication: computer system with n I/O 
devices ≈ n+1 CPU multiprocessor

Result:  all I/O devices + CPU busy = n + 1 fold speedup!

overlap them just right? ave. completion time ≈ halved

grep

Matrix multiplication

Running on CPU Blocked on disk



Process  *model*

• Process alternates between CPU and I/O bursts
CPU-bound job:  long CPU bursts

I/O-bound job:  short CPU bursts

I/O burst = process idle,  switch to another “for free”

Problem:  don’t know job’s type before running

• An underlying assumption:
“response time” most important for interactive jobs, which will 

be I/O bound

Matrix multiplication

emacs



Universal  scheduling  theme

• General multiplexing theme:  what’s “the best way” 
to run n processes on k nodes? (k < n)

we’re (probably) always going to do a bad job

• Problem 1:  mutually exclusive objectives
no one best way

latency vs throughput conflicts

speed vs fairness

• Problem 2:  incomplete knowledge
User determines what’s most important. Can’t mind read

Need future knowledge to make decision and evaluate impact. 
Use past = future

• Problem 3:  real systems = mathematically intractable
Scheduling very ad hoc. “Try and see”



Scheduling
• Until  now: Processes. From now on: resources

Resources are things operated on by processes
e.g., CPU time, disk blocks, memory page, network bufs

• Categorize resources into two categories:
Non-preemptible:  once given, can’t be reused until process 

gives back. Locks, disk space for files, terminal.
Preemptible: once given, can be taken away and returned. 

Register file, CPU, memory.

• A bit arbitrary, since you can frequently convert  
non-preemptible to preemptible:

create a copy and use indirection
e.g., physical memory pages: use virtual memory to allow 

transparent movement of page contents to/from disk.



How to allocate resources?

• Space sharing (horizontal):
How should the resource split up?
Used for resources not easily preemptible

e.g., disk space, terminal
Or when not *cheaply* preemptible

e.g., divide memory up rather than swap entire 
memory to disk on context switch.

• Time sharing (vertical):
Given some partitioning, who gets to use a given piece (and for how 

long)?
Happens whenever there are more requests than can be 

immediately granted
Implication:  resource cannot be divided further (CPU, disk arm) or 

it’s easily/cheaply pre-emptible (e.g., registers)



First come first served (FCFS or FIFO)

• Simplest scheduling algorithm
Run jobs in order that they arrive

Uni-programming:  Run until done (non-preemptive)

Multi-programming: put job at back of queue when 
blocks on I/O

Advantage:  very simple

Disadvantage: wait time depends on arrival order. Unfair 
to later jobs (worst case: long job arrives first)

e.g.,: three jobs (A, B, C) arrive nearly simultaneously)

what’s  the  average wait time?

Job a Job cJob bcpu

24 units 3 3

time



Summary

• Mutual exclusion introduces dependencies
circular dependencies = deadlock

can either prevent circularities or recover from them

• > 1 process = choice = scheduling
• We’ll first look at traditional systems

• Goals: response time, throughput, fairness

• Next time:  specific scheduling algorithms


