CSL373: Lecture 5

Deadlocks (no process runnable)
+

Scheduling (> 1 process runnable)

Past & Present

e Have looked at two constraints:

Mutual exclusion constraint between two events is a
requirement that they do not overlap in time

» Enforced using scheduling, locks, semaphores, monitors

Precedence constraint between two events is a requirement
that one completes before the other

» (usually) enforced using scheduling or semaphores
* Synchronization primitive ordering:

Atomic instructions can implement locks, locks can implement
semaphores (lock + integer counter) or monitors (one
implicit lock), and vice versa (of course)

* Today:
* Deadlock: what to do when many threads = no progress
e Scheduling: what to do when many threads want progress

Deadlock

* Graphically, caused by a directed cycle in inter-
thread dependencies

e.g., T1 holds resource R1 and is waiting on R2, T2 holds
R2 and is waiting on R1

s held-by
waltmg—fy tl \
r2 rl
held-Q\ -
£2 waiting-for

e.g., r1 =disk, r2 = printer
No progress possible
Even simple cases can be non-trivial to diagnose

An example

Lock I1, I2
void p() { voidq(){
|1->Acquire(); |2—>Acqu.|r'e():
|2->Acquire(): 11->Acquire();
<ops oh shared state> <ops oh shared state>
|2->Release(); I1->Release();
|1->Release(); 12->Release();

Deadlock Prevention: Eliminate one
condition

Problem: limited access

Solutions: Buy more resources, split into pieces, or split the usage of
a resource temporally to make it appear “infinite” in number

Problem: Non-preemption

Solution: create copies or virtualize
Threads: each thread has it’s own copy of registers = no lock

Physical memory: virtualized with VM, can take physical page away
and give to another process!

Problem: Hold + wait
Solution: acquire resources “all at once”

(wait on many without locking any, must know all needed)&
K, /

Problem: Circularity
Possible Solutions: \}
Single lock for entire system: (problems?)

Partial ordering of resources (next)

Partial orders: simple deadlock control

* Order resources (lockl, lock2, ...)

e Acquire resources in strictly increasing (or
decreasing) order

* |ntuition:

number all nodes in a graph

to form a cycle, there has to be at least one edge from
high to low number (or to same node)

/\ Y A

1 2 1

\/ ~—

What if you need to acquire locks in
different orders?

e Use trylocks()

* |f trylock fails, release all previously held locks
and reacquire them in correct order. Need to
make sure that the state is sane when
releasing locks.

* Remember that on releasing and reacquiring
locks, the state could have changed.

Example: out-of-order locks
//11 protects d1, I2 protects d2. lock order: 11, 12

//decrements d2 and if the result is 0, increments dl
void increment() {
|2->acquire();
int + = d2;
t--;
if (t==0){
if (trylock(l1)) d1++;
else {
12->release();
|1->acquire(); 12->acquire();

t = d2; t--; //recheck "t"
if (t==0) dl++;
}
|1->Release();
}
d2 = t;

|2->Release();
}

Two phase locking: simple deadlock

control
e Acquire all resources, if block on any, release all
and retry
print_file:
IOCk(_f'Ie)" , _ If any acquire fails, release all previously
acquire printer; acquired. Could we do this this without
acquire disk; a priori knowledge of what’s needed?
.. do work ...
release all

* Pro: dynamic, simple, flexible

* Con:
Cost with number of resources?
Length of critical section:
Abstraction breaking: hard to know what’s needed a priori

Deadlock Detection

1: Work = Avail;
Finish[i] = False for all i;

2: Find i such that Finish[i] = False and Request[i] <= Work
If no such i exists, goto 4

3: Work = Work + Alloc[i]; Finish[i] = True; goto 2

4: If Finish[i] = False for some i, system is deadlocked.
Moreover, Finish[i] = False implies that process i is
deadlocked.

When to run?

Detection + correction

 Terminate threads and release resources
Repeat until deadlock goes away
Con: Blowing away threads leaves system in what state?
Wild guess: probably not a sane state.
Stylized use: acquire all locks, then modify state. Can always blow

away the thread if acquire fails (basically two-phase locking with
thread termination)

* More fancy: roll back actions of deadlocked threads

acquire locks however
only modify state using invertible actions

get stuck? System kills thread (“bad thread”) and inverts actions.
Repeat as necessary

Each thread now behaves like a “transaction” that would either
complete in entirety or non at all (easy for programmer)

Problem: tracking actions, constructing inverses (refer databases)

Dirty secret: the most common
schemes

* Prevention: Test

Pro: no complex machinery. Everyone understands
testing

Con: interleavings = huge space.

e Kill app

Throw deadlock in the same box as infinite loops. Do
what you usually do.

Works for some applications (emacs, gcg, ...). Just rerun.

Con: not a valid solution for many applications
(example?)

Concurrency Summary

* Concu rrency errors:

One way to view: thread checks condition(s)/examines value(s)
and continues with the implicit assumption that this result
still holds while another thread modifies

* Fixes?
Rule 1: don’t do concurrency (poor utilization or impossible)

Rule 2: don’t share state (may be impossible)

Rule 3: If you violate 1 & 2, use one big lock [coarse-grain]
(could lead to poor utilization, e.g., Linux on multi-core)

Last resort: many locks (fine-grain: good parallelism but error
prone).

Scheduling: what job to run?

We'll have three main goals (many others possible)

minimize response/completion time

response time = what the user sees: elapsed time to echo keystroke
to editor (acceptable delay around 50-100ms)

Completion time: start to finish of job

time
gcc |

compie‘rion
Maximize throughput: operations(=jobs) per second
minimize overhead (context switching)

efficient use of resources (CPU, disk, cache, ...)

Fairness: share CPU “equitably”

Tension: unfairness might imply better throughput or better
response times

When does scheduler make decisions?

* Non preemptive minimum:

When process voluntarily relinquishes CPU
» process blocks on an event (e.g., I/O or synchronization)
» process terminates

exit

* Preemptive minimum

All of the above, plus:
Event completes: process moves from blocked to ready
Timer interrupts

Priorities: One process can be interrupted in favor of
another

I/0 completes,
child exits, unlock

scheduled

Can think of: 1/0 device = special CPU

* |/O device = one special purpose CPU

“special purpose” = disk drive can only run a disk job,
printer a print job, ...

* Implication: computer system with n 1/O

devices = n+1 CPU multiprocessor

Result: all I/0 devices + CPU busy = n + 1 fold speedup!
grep

Matrix multiplication

B Running on CPU [l Blocked on disk

overlap them just right? ave. completion time = halved

Process *model*

* Process alternates between CPU and I/O bursts

CPU-bound job: long CPU bursts
Matrix multiplication

|/O-bound job: short CPU bursts
emacs

|/O burst = process idle, switch to another “for free”

Problem: don’t know job’s type before running

* An underlying assumption:

“response time” most important for interactive jobs, which will
be I/0 bound

Universal scheduling theme

General multiplexing theme: what’s “the best way”
to run n processes on k nodes? (k < n)
we’re (probably) always going to do a bad job

Problem 1: mutually exclusive objectives

no one best way
latency vs throughput conflicts
speed vs fairness

Problem 2: incomplete knowledge

User determines what’s most important. Can’t mind read

Need future knowledge to make decision and evaluate impact.
Use past = future

Problem 3: real systems = mathematically intractable
Scheduling very ad hoc. “Try and see”

Scheduling

e Until now: Processes. From now on: resources

Resources are things operated on by processes
e.g., CPU time, disk blocks, memory page, network bufs

* Categorize resources into two categories:

Non-preemptible: once given, can’t be reused until process
gives back. Locks, disk space for files, terminal.

Preemptible: once given, can be taken away and returned.
Register file, CPU, memory.

* A bit arbitrary, since you can frequently convert
non-preemptible to preemptible:

create a copy and use indirection

e.g., physical memory pages: use virtual memory to allow
transparent movement of page contents to/from disk.

How to allocate resources?

e Space sharing (horizontal):
How should the resource split up?
Used for resources not easily preemptible
e.g., disk space, terminal
Or when not *cheaply* preemptible

e.g., divide memory up rather than swap entire
memory to disk on context switch.

 Time sharing (vertical):

Given some partitioning, who gets to use a given piece (and for how
long)?

Happens whenever there are more requests than can be
immediately granted

Implication: resource cannot be divided further (CPU, disk arm) or
it’s easily/cheaply pre-emptible (e.g., registers)

First come first served (FCFS or FIFO)

cpu

Simplest scheduling algorithm

Run jobs in order that they arrive
Uni-programming: Run until done (non-preemptive)

Multi-programming: put job at back of queue when
blocks on I/O

Advantage: very simple

Disadvantage: wait time depends on arrival order. Unfair
to later jobs (worst case: long job arrives first)

e.g.,: three jobs (A, B, C) arrive nearly simultaneously)
24 units 3 3

Job a Job b -

Time .
what’s the average wait time?

Summary

* Mutual exclusion introduces dependencies

circular dependencies = deadlock
can either prevent circularities or recover from them

> 1 process = choice = scheduling

 We'll first look at traditional systems
* Goals: response time, throughput, fairness

* Next time: specific scheduling algorithms

