
CSL373: Operating Systems
Lecture 3: concurrency

Sorav Bansal

Past and Present

• Past: isolated processes
– Modularize system
– Share resources
– Speed

• Today: safe non-isolated processes
– Processes share state (computer, files, memory).
– Concurrent access = bugs

• Example: single lane road, two approaching cars

• Readings:
– Silberschatz/Galvin: Ch 6
– Lampson’s concurrency notes (read again in a year)
– Birrell paper: “An introduction to programming with

threads”

gcc

hardware

OS

www lsvi

Multiple processes, one world: safe?

• No. Bugs if one process writes state that could be
simultaneously read/written by another.
emacs writes out file while gcc compiling it.

Result? Hard to predict, except that its probably not
going to be correct (or repeatable: have fun).

– Always dangerous? (No. More later.) But often enough
that you better think carefully.

• When safe? Isolated processes
– “isolated” = shares no state with any other process
– doesn’t really exist: share file system, memory, …

new

old
emacs gcc

Isolated vs non-isolated processes

• isolated: no shared data between processes
• If P produces result x, then running any other set of

independent processes P’, P”, … wouldn’t change it.

• Scheduling independence: any order = same result

• Consider: internet, lots of independent machines. If don’t
share state, doesn’t matter what other people do.

• Non-isolated: share state
• Result can be influenced by what other processes running

• Scheduling can alter results

• Big problem: non-deterministic. Same inputs != same result.
Makes debugging very very hard

new

old
emacs gcc newemacs gcc

Why share? Two core reasons

• Cost: buy m, amortize cost by letting n share (n >
m)

• One computer, many jobs; one road, many cars; this
classroom, many other classes.

• Information: need results from other processes

• Gives speed: parallel threads working on same state
• Gives modularity(?!): ability to share state lets us split tasks

into isolated processes (gcc, emacs) and communicate just
what is necessary

• Sharing information hugely important. Consider impact of
new ways to share information (print, telephone, internet,
www, human voice)

emacs gccc.c

Example: two threads, one counter

• Google.com gets millions of hits a day. Uses multiple
threads (on multiple processors) to speed things up.

• Simple shared state error: each thread increments
shared counter to track the number of hits today:

…
hits = hits + 1;
…

• What happens when two threads execute this code
concurrently

Fun with shared counters

• One possible result: lost update!

• One other possible result: everything works.
Bugs in parallel code are frequently intermittent. Makes

debugging hard.

• Called a “race condition”

hits = 0 + 1

read hits (0)

hits = 0 + 1

read hits (0)

T1 T2

hits = 1

time

hits = 0

Race conditions

• Race condition: timing dependent error
involving shared state

Whether it happens, depends on how threads scheduled

• *Hard* because:
• Must make sure all possible schedules are safe.

Number of possible schedules permutations is huge.

Some bad schedules? Some that will work sometimes?

they are intermittent. Timing dependent = small changes
(printf’s, different machine) can hide bug.

if(n == stack_size) /* A */
return full; /* B */

stack[n] = v; /* C */
n = n + 1; /* D */

More race condition fun

Who wins?

Guaranted that someone wins?

What if both threads run on own identical speed CPU
executing in parallel? (Guaranteed to go on forever?)

What to do???

Thread a:
i = 0;
while(i < 10)

i = i +1;
print “A won!”;

Thread b:
i = 0;
while(i > -10)

i = i - 1;
print “B won!”;

Dealing with race conditions

• Nothing. Can be a fine response
• If “hits” a performance counter, lost updates may not matter.
• Pros: simple, fast. Cons: usually doesn’t help.

• Don’t share: duplicate state, or partition:
• Do this whenever possible! One counter per process, two lane

highways instead of single, one room per professor, …

• Pros: simple again. Cons: never enough to go around or may
have to share (gcc eventually needs to compile file)

• Is there a general solution? Yes!
– What was our problem? Bad interleavings. So prevent!

hits[1] = hits[1] + 1; hits[2] = hits[2] + 1;

T2T1

Atomicity: controlling race conditions

• atomic unit = instruction sequence guaranteed to execute
indivisibly (also, a “critical section”).
– If two threads execute the same atomic unit at the same time,

one thread will execute the whole sequence before the other
begins.

– How to make multiple instructions seem like one atomic one??

hits = hits + 1

T1 T2

hits = 2

hits = 0

time hits = hits + 1

Making atomicity: Uniprocessor
• Only requirement: thread no pre-empted in critical section

• Have scheduler check thread’s program counter:
while (1) { /* naïve dispatcher loop */

interrupt thread;
if pc != critical section

save old thread state
pick thread
load new thread state

jump to thread

Pro: fast atomicity. Con: need compiler support.

• OS Traditional: threads disable/enable interrupts:

Pro: works. Con: infinite loop = stop the world

disable_interrupts();
hits = hits + 1;
enable_interrupts();

/* openbsd */
int s = splhigh();
hits = hits + 1;
splx(s);

save_flags(flags); /* linux */
cli()
hits = hits + 1;
restore_flags(flags);

Making atomicity: Multiprocessor

• Must prevent any other thread from executing critical
section

• Hardware support: could wire in atomic increment
• Pro: works. Con: not a general approach
• Instead, we do a variant: provide a hardware building block that can

construct atomic primitives

• General solution: locks (just like on door)
• When thread enters critical section, locks it so no other thread can

enter. when it leaves, thread unlocks it.

Pro: general. Con: manual, low level (better later…)

unlocklock

Locks: making code atomic.

• Lock: shared variable, two operations:
• “acquire” (lock): acquire exclusive access to lock, wait if lock

already acquired.
• “release” (unlock): release exclusive access to lock.

• How to use? Bracket critical section in lock/unlock:
lock hit_lock;
….
lock(hit_lock); hit = hit + 1; unlock(hit_lock);

Result: only one thread updating counter at a time.
Access is “mutually exclusive”: locks used in this way are

called “mutexes”
What have we done? Bootstrap big atomic units from

smaller ones (locks)

Lock rules for easy concurrency

• Every shared variable protected by a lock
• Shared = touched by more than one thread

int stack[], n;
lock s_l, n_l;

(Private data has implicit lock)

• Must hold lock for a shared variable before you touch
• Essential property: two threads can’t hold same lock at same time

• Atomic operations on several shared variables:
• Acquires all locks before touching, don’t release until done (two

phase locking)

lock(s_l); lock(n_l); stack[n++] = v; unlock(s_l); unlock(n_l);

Implementing locks. Try #1

• A simple implementation:
lock(L) {

while (L == 0) continue;
L = 0;

}

unlock(L) {
L = 1;

}

• Does this work?

Implementing locks. Try #2

• Lets try to get a uniprocessor version right first:

lock(L) {
disable_preemption();
while (L == 0) continue;
L = 0;
enable_preemption();

}

unlock(L) {
L = 1;

}

• Works? What happens if lock already acquired by
another thread and this thread tries to acquire it?

Implementing locks. Try #3

• Uniprocessor correct:
lock(L) {

acquired = 0;
while (!acquired) {

disable_preemption();
if (L == 1) {

acquired = 1;
L = 0;

}
enable_preemption();

}
}
unlock(L) { L = 1; }

• Issues:
– Is unlock correct?
– What’s a better thing to do if lock already acquired?

Implementing multiprocessing locks

• How?
• Turning off other processors probably too expensive. Or

impossible (OSes don’t let user-level threads to do so)
• Instead: have hardware support.

– Do we need a hardware lock instruction? No. Can build locks from more
primitive instructions.

– Common primitives: test & set, atomic swap, …

• Example instruction: atomic swap (aswap):
– aswap mem, R : atomically swap values in reg and

memory
temp = R; R = mem; mem = temp

– Hardware guarantees the two assignments are atomic.
This primitive lets us implement any other concurrency
primitive!

How does hardware make “aswap”
indivisible?

• For a simple plan: two CPUs, a bus, memory

Only one bus, only one CPU can use it
There’s an arbiter that decides
So, CPU grabs bus, does read AND write, releases bus
Arbiter forces one awap to finish before other can start

• Tidbit:
You can implement locks with ordinary load and store instructions

(just awkward and slow).
Lookup “Dekker’s algorithm”

CPU1 CPU2

Memory

Bus

A multiprocessor lock using ‘aswap’

• An aswap-based lock:
lock(L) {

acquired = 0;
while (!acquired) {

aswap acquired, L;
}

}
unlock(L) {

L = 1;
}

• Called a “spin lock”: thread spins until it acquires
lock.

• Problem with spinning?

Spin or block?

• Blocking is not free, so correct action depends on how long
before lock released.

Released “quickly”: spin-wait
Released “slowly” : block (yield)

• A nice strategy:
Spin for length of block cost
If lock not available, then block.
Performance always within a factor of two of optimal!

Blocking cost

spin

Time until
release

block

Optimality intuition

• Let cost of block = n cycles
• If we acquire lock after m cycles of spinning (m <= n),

then m is the optimal cost
– Nothing else would have been faster: blocking immediately

would have cost and m <= n

• If we spin for n cycles, then block, cost = 2n
– If we blocked immediately, would cost n
– Therefore, within 2 of optimal

• Same strategy works any situation where you have two
solutions:
one with an incremental cost
one with an up front cost
pay incremental cost until equals up-front cost, then switch
e.g., rent vs buy house

General atomicity requirements

• We’ve shown one way to implement critical sections
(locks). There are many others. However, they all share
three common safety requirements:
– Mutual exclusion: at most one process at a time is in the critical

section
– Progress (deadlock free):

• If several simultaneous requests, must allow one to proceed
• Must not depend on processes outside critical section

– Bounded (starvation free): A process attempting to enter critical
section will eventually succeed.

• Some nice properties:
• Fair: don’t make some wait longer than others
• Efficient: don’t waste resources waiting
• And yes, simple please.

Summary

• Many threads + sharing state = race conditions
• one thread modifying while others reading/writing

• How to solve? Intuition:
• Private state doesn’t need to be protected
• In case of multiple threads, run one after another, so can’t

have race conditions
• Sequential ordering (SO): to make multiple threads behave

like one safe sequential thread, force only one thread at a
time to use shared state

• General solution is to use locks. Let us bootstrap to
arbitrarily sized atomic units.

• Next time: higher-level mutual exclusion
primitives

Real life race condition

• Therac-25: used radiation to see patient internals
– Problem: safety interlocks between consold thread

and “fire radiation” had race conditions.
– Result: Accidents resulting in deaths.
– Why plural? When field tech examined machine, they

typed slower than doctors (who used machine
everyday) and did not trigger bug. Blamed doctors,
and put it back in service.

• NASA: two consoles for space shuttle computer
BUT: tested by one technician: typed on one console,

verified output, walked over, typed on other
So?

