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Past and Present

• Past: isolated processes
– Modularize system
– Share resources
– Speed

• Today: safe non-isolated processes
– Processes share state (computer, files, memory).
– Concurrent access = bugs

• Example: single lane road, two approaching cars

• Readings:
– Silberschatz/Galvin: Ch 6
– Lampson’s concurrency notes (read again in a year)
– Birrell paper: “An introduction to programming with 

threads”
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Multiple processes, one world: safe?

• No.  Bugs if one process writes state that could be 
simultaneously read/written by another.
emacs writes out file while gcc compiling it.

Result?  Hard to predict, except that its probably not 
going to be correct (or repeatable: have fun).

– Always dangerous? (No. More later.) But often enough 
that you better think carefully.

• When safe?  Isolated processes
– “isolated” = shares no state with any other process
– doesn’t really exist: share file system, memory, …
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Isolated vs non-isolated processes

• isolated: no shared data between processes
• If P produces result x, then running any other set of 

independent processes P’, P”, … wouldn’t change it.

• Scheduling independence: any order = same result

• Consider: internet, lots of independent machines. If don’t 
share state, doesn’t matter what other people do.

• Non-isolated: share state
• Result can be influenced by what other processes running

• Scheduling can alter results

• Big problem: non-deterministic. Same inputs != same result. 
Makes debugging very very hard
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Why  share?  Two core reasons

• Cost: buy m, amortize cost by letting n share (n > 
m)

• One computer, many jobs; one road, many cars; this 
classroom, many other classes.

• Information:  need results from other processes

• Gives speed: parallel threads working on same state
• Gives modularity(?!): ability to share state lets us split tasks 

into isolated processes (gcc, emacs) and communicate just 
what is necessary

• Sharing information hugely important. Consider impact of 
new ways to share information (print, telephone, internet, 
www, human voice)
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Example: two threads, one counter

• Google.com gets millions of hits a day. Uses multiple 
threads (on multiple processors) to speed things up.

• Simple shared state error: each thread increments 
shared counter to track the number of hits today:

…
hits = hits + 1;
…

• What happens when two threads execute this code 
concurrently



Fun with shared counters

• One possible result:  lost update!

• One other possible result:  everything works.
Bugs in parallel code are frequently intermittent. Makes 

debugging hard.

• Called a “race condition”

hits = 0 + 1

read hits (0)

hits = 0 + 1

read hits (0)
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Race conditions

• Race condition:  timing dependent error 
involving shared state

Whether it happens, depends on how threads scheduled

• *Hard* because:
• Must make sure all possible schedules are safe.  

Number of possible schedules permutations is huge.

Some bad schedules?   Some that will work sometimes?

they are intermittent. Timing dependent = small changes 
(printf’s, different machine) can hide bug.

if(n == stack_size)  /* A */
return full;   /* B */

stack[n] = v;         /* C */
n = n + 1;            /* D */



More race condition fun

Who wins?

Guaranted that someone wins?

What if both threads run on own identical speed CPU 
executing in parallel? (Guaranteed to go on forever?)

What to do???

Thread a:
i = 0;
while(i < 10)

i = i +1;
print “A won!”;

Thread b:
i = 0;
while(i > -10)

i = i - 1;
print “B won!”;



Dealing with race conditions

• Nothing.  Can be a fine response
• If “hits” a performance counter, lost updates may not matter.
• Pros:  simple, fast.  Cons: usually doesn’t help.

• Don’t share: duplicate state, or partition:
• Do this whenever possible!  One counter per process, two lane 

highways instead of single, one room per professor, …

• Pros:  simple again.  Cons:  never enough to go around or may 
have to share (gcc eventually needs to compile file)

• Is there a general solution?   Yes!
– What was our problem?   Bad interleavings.  So prevent!

hits[1] = hits[1] + 1;  hits[2] = hits[2] + 1; 
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Atomicity:  controlling race conditions

• atomic unit = instruction sequence guaranteed to execute 
indivisibly (also, a “critical section”).
– If two threads execute the same atomic unit at the same time, 

one thread will execute the whole sequence before the other 
begins.

– How to make multiple instructions seem like one atomic one??

hits = hits + 1
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Making atomicity:  Uniprocessor
• Only requirement:  thread no pre-empted in critical section

• Have scheduler check thread’s program counter:
while (1) { /*  naïve dispatcher loop  */

interrupt thread;
if   pc != critical section

save old thread state
pick thread
load new thread state

jump to thread

Pro:  fast atomicity.   Con: need compiler support.

• OS Traditional:  threads disable/enable interrupts:

Pro:  works.  Con:  infinite loop = stop the world

disable_interrupts();
hits = hits + 1;
enable_interrupts();

/* openbsd */
int s = splhigh(); 
hits = hits + 1;
splx(s);

save_flags(flags); /* linux */
cli()
hits = hits + 1;
restore_flags(flags);



Making  atomicity:  Multiprocessor

• Must prevent any other thread from executing critical 
section

• Hardware support:  could wire in atomic increment
• Pro:  works.   Con: not a general approach
• Instead, we do a variant:  provide a hardware building block that can 

construct atomic primitives

• General solution:  locks (just like on door)
• When thread enters critical section, locks it so no other thread can 

enter.  when it leaves, thread unlocks it.

Pro:  general.  Con: manual,  low level (better later…)

unlocklock



Locks:  making code atomic.

• Lock:  shared variable, two operations:
• “acquire” (lock): acquire exclusive access to lock, wait if lock 

already acquired.
• “release” (unlock):  release exclusive access to lock.

• How to use? Bracket critical section in lock/unlock:
lock  hit_lock;
….
lock(hit_lock);  hit = hit + 1;  unlock(hit_lock);

Result:  only one thread updating counter at a time.
Access is “mutually exclusive”:  locks used in this way are 

called “mutexes”
What have we done?   Bootstrap big atomic units from 

smaller ones  (locks)



Lock rules for easy concurrency

• Every shared variable protected by a lock
• Shared = touched by more than one thread

int stack[], n;
lock  s_l,  n_l;

(Private data has implicit lock)

• Must hold lock for a shared variable before you touch
• Essential property: two threads can’t hold same lock at same time

• Atomic operations on several shared variables:
• Acquires all locks before touching, don’t release until done (two 

phase locking)

lock(s_l); lock(n_l);  stack[n++] = v;  unlock(s_l);  unlock(n_l);



Implementing locks.  Try #1

• A simple implementation:
lock(L)  {

while (L == 0) continue;
L = 0;

}

unlock(L)  {
L = 1;

}

• Does this work?



Implementing locks.  Try #2

• Lets try to get a uniprocessor version right first:

lock(L)  {
disable_preemption();
while (L == 0)   continue;
L = 0;
enable_preemption();

}

unlock(L)  {
L = 1;

}

• Works?  What happens if lock already acquired by 
another thread and this thread tries to acquire it?



Implementing locks.  Try #3 

• Uniprocessor correct:
lock(L)  {

acquired = 0;
while (!acquired)  {

disable_preemption();
if (L == 1) {

acquired = 1;
L = 0;

}
enable_preemption();

}
}
unlock(L)  {   L = 1; }

• Issues:
– Is unlock correct?
– What’s a better thing to do if lock already acquired?



Implementing multiprocessing locks

• How?
• Turning off other processors probably too expensive. Or 

impossible (OSes don’t let user-level threads to do so)
• Instead: have hardware support.

– Do we need a hardware lock instruction? No.  Can build locks from more 
primitive instructions.

– Common primitives:  test & set,  atomic swap, …

• Example instruction:  atomic swap (aswap):
– aswap mem, R  :  atomically swap values in reg and 

memory
temp = R; R = mem; mem = temp

– Hardware guarantees the two assignments are atomic. 
This primitive lets us implement any other concurrency 
primitive!



How does hardware make “aswap” 
indivisible?

• For a simple plan: two CPUs, a bus, memory

Only one bus, only one CPU can use it
There’s an arbiter that decides
So, CPU grabs bus, does read AND write, releases bus
Arbiter forces one awap to finish before other can start

• Tidbit: 
You can implement locks with ordinary load and store instructions 

(just awkward and slow).
Lookup “Dekker’s algorithm”
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A multiprocessor lock using ‘aswap’

• An aswap-based lock:
lock(L)   {

acquired = 0;
while (!acquired) {

aswap acquired, L;
}

}
unlock(L)   {

L = 1;
}

• Called a “spin lock”: thread spins until it acquires 
lock.

• Problem with spinning?



Spin or block?

• Blocking is not free, so correct action depends on how long 
before lock released.

Released “quickly”: spin-wait
Released “slowly” : block (yield)

• A nice strategy:
Spin for length of block cost
If  lock not available, then block.
Performance always within a factor of two of optimal!

Blocking cost

spin

Time until
release

block



Optimality  intuition

• Let cost of block = n cycles
• If we acquire lock after m cycles of spinning (m <= n), 

then m is the optimal cost
– Nothing else would have been faster: blocking immediately 

would have cost and m <= n

• If we spin for n cycles, then block, cost = 2n
– If we blocked immediately, would cost n
– Therefore, within 2 of optimal

• Same strategy works any situation where you have two 
solutions:
one with an incremental cost
one with an up front cost
pay incremental cost until equals up-front cost, then switch
e.g., rent vs buy house



General  atomicity requirements

• We’ve shown one way to implement critical sections 
(locks). There are many others. However, they all share 
three common safety requirements:
– Mutual exclusion: at most one process at a time is in the critical 

section
– Progress (deadlock free):

• If several simultaneous requests, must allow one to proceed
• Must not depend on processes outside critical section

– Bounded (starvation free): A process attempting to enter critical 
section will eventually succeed.

• Some nice properties:
• Fair: don’t make some wait longer than others
• Efficient: don’t waste resources waiting
• And yes, simple please.



Summary

• Many threads + sharing state = race conditions
• one thread modifying while others reading/writing

• How to solve? Intuition:
• Private state doesn’t need to be protected
• In case of multiple threads, run one after another, so can’t 

have race conditions
• Sequential ordering (SO): to make multiple threads behave 

like one safe sequential thread, force only one thread at a 
time to use shared state

• General solution is to use locks. Let us bootstrap to 
arbitrarily sized atomic units.

• Next time:  higher-level mutual exclusion 
primitives



Real life race condition

• Therac-25: used radiation to see patient internals
– Problem: safety interlocks between consold thread 

and “fire radiation” had race conditions.
– Result: Accidents resulting in deaths.
– Why plural?  When field tech examined machine, they 

typed slower than doctors (who used machine 
everyday) and did not trigger bug. Blamed doctors, 
and put it back in service.

• NASA:  two consoles for space shuttle computer
BUT: tested by one technician:  typed on one console, 

verified output, walked over, typed on other
So?


