
CSL373: Operating Systems
Lecture 2: threads & processes

Sorav Bansal

Today’s big adventure

• What are processes, threads?

• What are they for?

• How do they work?

• Threads vs processes?

• Readings: Silberschatz/Galvin: Ch 4 (skip 4.6)

Why processes? Simplicity

• Hundreds of things going on in the system

• How to make simple?
– Separate each in isolated process. OS deals with

one thing at a time, they just deal with OS

– *THE* universal trick for managing complexity:
decomposition (“reductionism”)

gccemacs
nfsd

lpr
lswww

emacsnfsd

lprls
www

OS
OS

Why processes? Speed

• I/O parallelism:

overlap execution: make 1 CPU into many

(Real parallelism: > 1 CPU (multiprocessing))

• Completion time:

B’s completion time = 100s (A + B). So overlap

emacs

gcc

(wait for input) (wait for input)

A B
80 s 20 s

A

B 10 s Completion time for B? A?

Processes in the real world

• Processes, parallelism fact of life much longer
than OSes have been around
– Companies use parallelism for more throughput: 1

worker = 100 widgets? Hire 100 to make 10,000.

• Can you always partition work to speed up job?
– Ideal: N-fold speedup
– Reality: bottlenecks + coordination overhead
– Example: Will class size=1000 work? Or will project

group size=30 work? (Similar problem in programs.)
(More abstractly: easy to increase throughput, reducing

latency more difficult)

What is a thread?

• In theory: turing machine
tape(state), tape head(position)

• In practice: What’s needed to run code on CPU
“execution stream in an execution context”

Execution stream: sequential sequence of instructions

• CPU execution context (1 thread)
state: stack, heap, registers

position: program counter register

• OS execution context (n threads):
Identity + open file descriptors, page table, …

add r1, r2, r3
sub r2, r3, r10
st r2, 0(r1)

…

What is a process?

• Process: thread + address space
or, abstraction representing what you need to run

thread on OS (open files, etc)

• Address space: encapsulates protection
Address state passive, threads active

• Why separate thread, process?
Many situations where you want multiple threads per

address space (servers, OS, parallel program)

google

Process != Program

• Program: code + data

passive

• Process: running program

state: registers, stack, heap…

position: program counter

• We both run netscape:

Same program, different process

int a;
int main() {

printf(“hello”);
}

stack

heap
data
code

int a;

main()

How to make one?

• Creation:
Load code and data into memory; create empty call

stack
Initialize state to same as after a process switch
Put on OS’s list of processes

• Clone:
Stop current process and save state
Make copy of current code,

data, stack and OS state
Add new process to OS’s list of processes

gcc

gcc gcc

Example: Unix

• How to make processes:
– fork() clones a process
– exec() overlays the current process
– No create! Fork then exec.

if ((pid = fork()) == 0) {
/* child process */
exec(“foo”); /* exec does not return */

} else {
/* parent */
wait(pid); /* wait for child to finish */

}

• Pros: Simple, clean. Con: duplicate operations
• Note: fork() and exec() are “system calls”

• system calls = functions implemented by the OS and exposed to
the application)

• Look just like a normal procedure call, but implemented
differently. Other examples: open(), read(), write(), …

Process environments

• Uniprogramming: 1 process at a time
“Cooperative timesharing”: vintage OSes
Easy for OS, hard for user (generally)
Violates isolation: Infinite loops? When should process yield?

• Multiprogramming: >1 process at a time
Time-sharing: CTSS, Multics, Unix, VMS, NT

multiprogramming != multiprocessing

OS

OS

The multithreading illusion

• Each thread has its illusion of own CPU
– yet on a uni-processor, all threads share the same

physical CPU!

How does this work?

• Two key pieces:
– thread control block: one per thread, holds execution

state
– dispatching loop: while(1)

interrupt thread
save state
get next thread
load state, jump to it

CPU

The multiprogramming problems

• Track state? PCB (process control block)
– Thread state, plus OS state: identify, accounting, …

• N processes? Who to run? (“Scheduling”)
Need to schedule whenever 1 resource and many

requestors (disk, net, CPU, classroom, …)

• Protection? Need two things
– Prevent process from getting at another’s state

– Fairness: make sure each process gets to run

– No protection? System crashes ~ O(# of processes)

Priority registers open file descriptors, ...pcb

Process states

• Processes in three states

• Running: executing now

• Ready: waiting for CPU

• Blocked: waiting for another event (I/O, lock)

• Which ready process to pick?
0 ready processes: run idle loop

1 ready process: easy!

>1: what to do?

running ready

blocked

Picking a process to run

• Scan process table for first runnable?

Expensive. Weird priorities (small pid’s better)

Divide into runnable and blocked processes

• FIFO?

– Put threads on back of list, pull them off from front

(pintos does this)

• Priority?

give some threads a better shot at the CPU problem?

(you are required to implement this in Assignment 1)

Scheduling policies

• Scheduling issues
fairness: don’t starve process
prioritize: more important first
deadlines: must do by time ‘x’ (car brakes)
optimization: some schedules >> faster than others

• No universal policy:
Many variables, can’t maximize them all
conflicting goals

• more important jobs vs starving others
• I want my job to run first, you want yours.

• Given some policy, how to get control? Switch?

How to get control?

• Traps: events generated by current process
• System calls

• Errors (illegal instructions)

• Page faults

• Interrupts: events external to the process
• I/O interrupt

• Timer interrupt (every 100 milliseconds or so)

• Process perspective
– Explicit: process yields processor to another

– Implicit: causes an expensive blocking event, gets
switched

How to “context switch”?

• Very machine dependent. Must save:
general-purpose & floating point registers, any co-
processor state, shadow registers (Alpha, sparc)

• Tricky:
OS code must save state without changing any state
How to run without touching any registers??

Some CISC machines have single instruction to save all
registers on stack
RISC: reserve registers for kernel (MIPS) or have way to
carefully save one and then continue

• How expensive? Direct cost of saving; opportunity cost
of flushing useful caches (cache, TLB, etc.)

Fundamentals of process switching

• “execution” *THE* grand theme of CS:
procedure calls, threads, processes just variations

• What’s the minimum to execute code?
– Position (pointer to current instruction)
– State (captures result of computation)

• Minimum to switch from one to another?
– Save old instruction pointer and load new one

• What about state?
– If per-thread state, have to save and restore
– In practice, can save everything, nothing or combination.

Switching between procedures

• Procedure call:
save active caller registers
call foo

restore caller regs

• How is state saved?
saved proactively? saved lazily? not saved?

saves used callee registers
…do stuff...

restores callee registers
jumps back to pc

Threads vs procedures

• threads may resume out of order
– cannot use LIFO stack to save state
– general solution: duplicate stack

• threads switch less often
– don’t partition registers (why?)

• threads involuntarily interrupted:
– synchronous: proc call can use compiler to save state
– asynchronous: thread switch code saves all registers

• more than one thread can run
– scheduling: what to overlay on CPU next?
– proc call scheduling obvious: run called procedure.

~Synchronous thread switching

called by scheduler: a0 holds ptr to old thread blk,
a1 ptr to new thread blk
cswitch:

add sp, sp, -128
st s0, 0(sp) # save callee registers
st s1, 4(sp)
…
st ra, 124(sp) # save return addr
st sp, 0(a0) # save stack
ld sp, 0(a1) # load up in reverse
ld s0, 0(sp)
…
add sp, sp, 128
j ra

~Asynch thread switching
Assume ~MIPS, k0 = reserved reg

save current state:
triggered by interrupt
save_state:

add sp, sp, -128
st s0, 0(sp) # save callee regs
…

st t0, 64(sp) # save caller regs
…

st epc, 132(sp) # interrupt pc
ld k0, current_thread
st sp, 0(k0)
ld sp, scheduler_stack
j scheduler

restore current state
called by scheduler
restore_state:

ld k0, current_thread
ld sp, 0(k0)
ld s0, 0(sp)

...
ld t0, 64(sp)
…
add sp, sp, 128
ld k0, 132(sp) # old pc
j k0

Process vs threads

• Different address space:
switch page table, etc.
Problems: How to share data? How to communicate?

• Different process have different privileges:
switch OS’s idea of who’s running

• Protection:
have to save state in safe place (OS)
need support to forcibly revoke processor
Prevent imposters

• Different than procedures?
OS, not compiler, manages state saving

Real OS permutations

• One or many address spaces

• One or many threads per address space

of address spaces 1 many

of threads/space

1

MS/DOS
Macintosh

Traditional UNIX

many
Embedded systems,

Pilot
VMS, Mach, OS/2,

Win/NT, Solaris, HP-UX,
Linux

Generic abstraction template

• Abstraction: how OS abstracts underlying resource

• Virtualization: how OS makes small number of
resources seem like an “infinite” number

• Partitioning: how OS divides resource

• Protection: how OS prevents bad people from using
pieces they shouldn’t

• Sharing: how different instances are shared

• Speed: how OS reduces management overhead

How CPU abstracted

• CPU state represented as process

• Virtualization: processes interleaved transparently (run ~1/n
slower than real CPU)

• Partitioning: CPU shared across time

• Protection: (1)pigs: forcibly interrupted; (2) corruption:
process’ state saved in OS; (3) imposter: cannot assume
another’s identity

• Sharing: yield your CPU time slice to another process

• Speed: (1) large scheduling quanta; (2) minimize state needed
to switch; (3) share common state (code); (4) duplicate state
lazily

Summary

• Thread = pointer to instruction + state

• Process = thread + address space

• Key aspects:
• Per-thread state

• Picking a thread to run

• Switching between threads

• The future:

– How to share state among threads?

