CSL373: Operating Systems
Lecture 2: threads & processes

Today’s big adventure

What are processes, threads?
What are they for?

How do they work?

Threads vs processes?

Readings: Silberschatz/Galvin: Ch 4 (skip 4.6)

Why processes? Simplicity

 Hundreds of things going on in the system

m‘% I
GCS_’
- - =
* How to make simple?

— Separate each in isolated process. OS deals with
one thing at a time, they just deal with OS

— *THE* universal trick for managing complexity:
decomposition (“reductionism”)

Why processes? Speed

* |/O parallelism:

>|(wait for input)i >|(wait for input)|—>

gcc > >
overlap execution: make 1 CPU into many

(Real parallelism: > 1 CPU (multiprocessing))

e Completion time: 20 < 50 s
A >B—>

B’s completion time = 100s (A + B). So overlap
A —> — o

B 10< —> Completion time for B? A?

Processes in the real world

* Processes, parallelism fact of life much longer
than OSes have been around

— Companies use parallelism for more throughput: 1
worker = 100 widgets? Hire 100 to make 10,000.

* Can you always partition work to speed up job?
— |ldeal: N-fold speedup
— Reality: bottlenecks + coordination overhead

— Example: Will class size=1000 work? Or will project
group size=30 work? (Similar problem in programs.)

(More abstractly: easy to increase throughput, reducing
latency more difficult)

What is a thread?

In theory: turing machine ‘ ‘ ‘ ‘ ‘ $
tape(state), tape head(position)
In practice: What’s needed to run code on CPU
“execution stream in an execution context”

Execution stream: sequential sequence of instructions

CPU execution context (1 thread) add rl r2, r3
state: stack, heap, registers sub r2, r3, r10
position: program counter register st r2, 0(rl)

OS execution context (n threads):
Identity + open file descriptors, page table, ...

What is a process?

* Process: thread + address space

or, abstraction representing what you need to run
thread on OS (open files, etc)

e Address space: encapsulates protection
Address state passive, threads active

* Why separate thread, process?

Many situations where you want multiple threads per
address space (servers, OS, parallel program)

333 o 333

Process != Program

* Program: code + data int a;
passive int main() {
printf(“hello”);
}
Process: running program sTackI
state: registers, stack, heap... I

position: program counter
* We both run netscape: heap

data int a;

Same program, different process .
Poe PP code | main()

How to make one?

* Creation:

Load code and data into memory; create empty call
stack

Initialize state to same as after a process switch
Put on OS’s list of processes

* Clone:
Stop current process and save state
Make copy of current code,
data, stack and OS state
Add new process to OS’s list of processes

Example: Unix

 How to make processes:
— fork() clones a process
— exec() overlays the current process

— No create! Fork then exec.
if ((pid = fork()) == 0) {

/* child process */
exec(“foo”); /* exec does not return */

} else {

/* parent */

wait(pid); /* wait for child to finish */
}

* Pros: Simple, clean. Con: duplicate operations

* Note: fork() and exec() are “system calls”

» system calls = functions implemented by the OS and exposed to
the application)

* Look just like a normal procedure call, but implemented
differently. Other examples: open(), read(), write(), ...

Process environments

* Uniprogramming: 1 process at a time O

“Cooperative timesharing”: vintage OSes -

Easy for OS, hard for user (generally)
Violates isolation: Infinite loops? When should process yield?

 Multiprogramming: >1 process at a time
Time-sharing: CTSS, Multics, Unix, VMS, NT

O OO
| 0s]

multiprogramming != multiprocessing

The multithreading illusion

e Each thread has its illusion of own CPU

— yet on a uni-processor, all threads share the same
physical CPU!

How does this work? k{{t}
CPU

* Two key pieces:
— thread control block: one per thread, holds execution

state
— dispatching loop: while(1)
interrupt thread
save state

get next thread
load state, jump to it

The multiprogramming problems

* Track state? PCB (process control block)
— Thread state, plus OS state: identify, accounting, ...

pcb‘Pr'ior'i‘ry ‘ r'egis’rer's‘ open file descriptors, ‘

* N processes? Who to run? (“Scheduling”)

Need to schedule whenever 1 resource and many
requestors (disk, net, CPU, classroom, ...)

* Protection? Need two things
— Prevent process from getting at another’s state
— Fairness: make sure each process gets to run
— No protection? System crashes ~ O(# of processes)

Process states

* Processes in three states g

* Running: executing now
* Ready: waiting for CPU
* Blocked: waiting for another event (1/0, [ock)

* Which ready process to pick?
O ready processes: run idle loop
1 ready process: easy!
>1: what to do?

Picking a process to run

* Scan process table for first runnable?
Expensive. Weird priorities (small pid’s better)
Divide into runnable and blocked processes

 FIFO?
— Put threads on back of list, pull them off from front

—

> >
(pintos does this)

L |

* Priority?
give some threads a better shot at the CPU problem?
(you are required to implement this in Assignment 1)

Scheduling policies

e Scheduling issues
fairness: don’t starve process
prioritize: more important first
deadlines: must do by time ‘x’ (car brakes)
optimization: some schedules >> faster than others

* No universal policy:
Many variables, can’t maximize them all

conflicting goals
* more important jobs vs starving others
* | want my job to run first, you want yours.

* Given some policy, how to get control? Switch?

How to get control?

* Traps: events generated by current process

e System calls
* Errors (illegal instructions)
* Page faults

* Interrupts: events external to the process
* |/O interrupt
e Timer interrupt (every 100 milliseconds or so)
* Process perspective
— Explicit: process yields processor to another

— Implicit: causes an expensive blocking event, gets
switched

How to “context switch”?

* Very machine dependent. Must save:

general-purpose & floating point registers, any co-
processor state, shadow registers (Alpha, sparc)

* Tricky:
OS code must save state without changing any state
How to run without touching any registers??

Some CISC machines have single instruction to save all
registers on stack

RISC: reserve registers for kernel (MIPS) or have way to
carefully save one and then continue

 How expensive? Direct cost of saving; opportunity cost
of flushing useful caches (cache, TLB, etc.)

Fundamentals of process switching

“execution” *THE* grand theme of CS:
procedure calls, threads, processes just variations

What’s the minimum to execute code?
— Position (pointer to current instruction)
— State (captures result of computation)

Minimum to switch from one to another?
— Save old instruction pointer and load new one

What about state?
— If per-thread state, have to save and restore
— In practice, can save everything, nothing or combination.

Switching between procedures

e Procedure call:

save active caller registers
call foo —

—> saves used callee registers
..do stuff...
restores callee registers

/jumps back to pc

restore ca!ler' regs

* How is state saved?
saved proactively? saved lazily? not saved?

Threads vs procedures

threads may resume out of order
— cannot use LIFO stack to save state
— general solution: duplicate stack

threads switch less often
— don’t partition registers (why?)

threads involuntarily interrupted:
— synchronous: proc call can use compiler to save state
— asynchronous: thread switch code saves all registers

more than one thread can run
— scheduling: what to overlay on CPU next?
— proc call scheduling obvious: run called procedure.

~Synchronous thread switching

called by scheduler: a0 holds ptr to old thread blk,
al ptr to new thread blk

cswitch:
add

sp, sp, -128
sO, O(sp) # save callee registers
s1, 4(sp)

ra, 124(sp) # save return addr
sp, 0(@0) # save stack

sp, 0(al) # load up in reverse
sO, O(sp)

sp, sp, 128
ra

~Asynch thread switching

Assume “MIPS, kO = reserved reg

H save current §T0Te: # restore current state
friggered by interrupt # called by scheduler
save_state: restore_state:
add sp, sp, -128 |d kO, current_thread
st sO, O(sp) # save callee regs Id sp, O(k0)
Id sO, O(sp)
st 10, 64(sp) # save caller regs
| |d 10, 64(sp)
st epc, 132(sp) # interrupt pc
Id kO, current_thread add sp, sp, 128
st sp, O(kO) |d kO, 132(sp) # old pc
Id sp, scheduler_stack j kO

j scheduler

Process vs threads

Different address space:
switch page table, etc.
Problems: How to share data? How to communicate?

Different process have different privileges:
switch OS’s idea of who's running

Protection:

have to save state in safe place (OS)
need support to forcibly revoke processor
Prevent imposters

Different than procedures?
OS, not compiler, manages state saving

Real OS permutations

* One or many address spaces
* One or many threads per address space

of address spaces 1 many
of threads/space
MS/DOS Traditional UNIX
1 Macintosh
Embedded systems, VMS, Mach, 0S/2,
many Pilot Win/NT, Solaris, HP-UX,
Linux

Generic abstraction template

Abstraction: how OS abstracts underlying resource

Virtualization: how OS makes small number of
resources seem like an “infinite” number

Partitioning: how OS divides resource

Protection: how OS prevents bad people from using
pieces they shouldn’t

Sharing: how different instances are shared

Speed: how OS reduces management overhead

How CPU abstracted

CPU state represented as process

Virtualization: processes interleaved transparently (run ~1/n
slower than real CPU)

Partitioning: CPU shared across time

Protection: (1)pigs: forcibly interrupted; (2) corruption:
process’ state saved in OS; (3) imposter: cannot assume
another’s identity

Sharing: yield your CPU time slice to another process

Speed: (1) large scheduling quanta; (2) minimize state needed
to switch; (3) share common state (code); (4) duplicate state
lazily

Summary

Thread = pointer to instruction + state
Process = thread + address space
Key aspects:

* Per-thread state
* Picking a thread to run
e Switching between threads

The future:
— How to share state among threads?

