
CSL373: Operating Systems

Instructor: Sorav Bansal

TA: Swati Sharma

Administrivia

• Class web page:
http://cse.iitd.ernet.in/~sbansal/csl373

– All assignments, reference material, lecture notes
online

• Textbook: Operating System Concepts, 8th

edition, by Silberschatz, Galvin and Gagne

http://cse.iitd.ernet.in/~sbansal/csl373

Course Topics

• Threads & Processes

• Concurrency & Synchronization

• Scheduling

• Virtual Memory

• I/O

• Disks, File systems, Network file systems

• Protection & Security

• Virtual Machine Monitors

Course Goals

• Introduce you to operating system concepts

• Cover important systems concepts in general
– Caching, concurrency, memory management, I/O, protection

• Teach you to deal with large software systems
– Programming assignments bigger than any other course
– Warning: This course will probably be your heaviest this

semester

• Prepare you for advanced systems courses (advanced
topics, recent developments, etc.)

Programming Assignments

• Implement parts of Pintos operating system

– Built for x86 hardware, you will use hardware
emulator

• Four implementation projects

– Threads

– Processes (Multiprogramming)

– Virtual Memory

– File System

• Implement projects in groups of up to 3 people

Grading

• 50% of final grade based on minors and major
• 50% of final grade based on projects

– For each project, 50% of grade based on test cases
• Please turn in working code, or no credit

– Remaining 50% based on design, outlined in
document

• Do not look at other people’s solutions to
projects

• Can read but don’t copy other OSes (Linux,
Open/FreeBSD, etc.)

• Cite any code that inspired your code

What is an operating system?

• OS = primal mud of a computer system
– Makes reality pretty
– OS is magic to most people. This course rips open.

• OS = extended example of a complex system
– Huge, parallel, not understood, insanely expensive to build

• Win/NT: 8 years, 1000s of people. Still doesn’t work well.

– Most interesting things are complex: internet, air traffic control,
governments, weather, bf/gf, …

• How to deal with complexity?
– Abstraction + modularity + iteration
– Fail early, fail often. Grow from something that works
– Unbelievably effective: int main() { puts(“hello”); } = millions of

lines of code! but don’t have to think about it.

What is an OS?

• software between applications and reality:
– abstracts hardware and makes portable
– makes finite into (near)infinite
– provides protection

emacs gcc
Doom, XXI

OS
hardware

Abstraction

• What if? The entire software stack was one giant
event-driven loop.
– Possible, BUT clumsy
– Certainly not practical for general purpose computers

• Better way:
– Separate software into layers of abstraction

• e.g., OS  JVM  Java bytecode

– All programs are written (or compiled) to the
abstraction provided by the OS
• Abstractions may be different for different OS’es

– e.g., Windows program will not run on Linux even though same
underlying hardware

Why study operating systems?

• Operating systems are a maturing field
• Most people use a handful of mature Oses
• Hard to get people to switch operating systems
• Hard to have impact with a new OS

• High-performance servers are an OS issue
• Face many of the same issues as Oses

• Resource consumption is an OS issue
• Battery life, radio spectrum, etc.

• Security is an OS issue
• Hard to achieve security without a solid foundation

• Scalability is an OS issue
• Large server farms need to solve hard OS problems

• New “smart” devices need new OSes

OS evolution: step 0

• Simple OS: One program, one user, one machine

– Examples: early PCs, nintendo, cars, elevators, …

– OS just a library of standard services. Examples:
standard device drivers, interrupt handlers, I/O.

• Non-problems: No bad people. No bad programs.
A minimum number of complex interactions.

• Problem: poor utilization, expensive

hardware OSApp

hardware

OS evolution: step 1

• Simple OS is inefficient
– If process is waiting for something, machine sits wasted.

• (Seemingly) Simple hack:
– Run more than one process at once
– When one process blocks, switch to another

• A couple of problems: what if a program
– Infinite loops?
– Starts randomly scribbling on memory?

• OS adds protection
+ Interposition
+ preemption
+ privilege

gcc emacs

OS
hardware

OS evolution: step 2

• Simple OS is expensive
– One user = one computer (compare to computing lab)

• (Seemingly) Simple hack:
– Allow more than one user at once
– Does machine run N times slower? Usually not! Key

observation: users bursty. If one idle, give other
resources.

• Couple of problems:
– What if users are gluttons? Evils? Or just too many?

• OS adds protection
– (notice: as we try to utilize resources, complexity

grows)

Protection at 50,000 feet

• Goal: isolate bad programs and people
– main ideas: preemption + interposition + privileged ops

• Pre-emption:
– Give application something, can always take it away

• Interposition:
– OS between application and reality
– Track all pieces that application allowed to use (usually in a

table)
– On every access, look in table to check that access legal

• Privileged/unprivileged mode
– Applications unprivileged (peasant)
– OS privileged (god)
– Protection operations can only be done in privileged mode.

Wildly successful protection examples

• Protecting CPU: pre-emption
– Clock interrupt: hardware periodically “suspends”

app, invokes OS
– OS decides whether to take CPU away
– Other times? Process blocks, I/O completes, system

call

• Protecting memory: Address translation
– Every load and store checked for legality
– Typically use this machinery to translate to new value

(why??)
– (protecting disk memory similar)

Address translation

• Idea:
– Restrict what a program can do by restricting what it can

touch!

• Definitions:
– Address space: all addresses a program can touch
– Virtual address: addresses in process’ address space
– Physical address: address of real memory
– Translation: map virtual to physical address

• “Virtual memory”
– Translation done using per-process tables (page table)
– done on every load and store, so uses hardware for speed
– protection? If you don’t want process to touch a piece of

physical memory, don’t put translation in table

Quick example: Real systems have
holes

• OSes protect some things, ignore others

• Most will blow up if you run this simple program
int main() { while (1) fork(); }

Common response: freeze (unfreeze = reboot)

(if not, try allocating and touching memory too)

assume stupid, but not malicious users

• Duality: solve problems technically or socially

– technical: have process/memory quotas

– social: yell at idiots that crash machines

– another example: security: encryption vs laws

OS theme 1: fixed pie, infinite demand

• How to make pie go farther?
– Key: resource usage is bursty! So give to others when idle
– E.g., Waiting for web page? Give CPU to another process
– 1000s of years old: rather than one classroom, instructor, restaurant,

road, etc. per person, share. Same issues.

• BUT, more utilization = more complexity.
– How to manage? (E.g., 1 road per car versus highway)
– Abstraction (different lanes), synchronization (traffic lights), increase

capacity (build more roads)

• BUT, more utilization = more contention. What to do when illusion
breaks?
– Refuse service (busy signal), give up (VM swapping), backoff and retry

(ethernet), break (freeway)

Fixed pie, infinite demand (pt 2)

• How to divide pie?
– User? Yeah, right.
– Usually treat all apps same, then monitor and re-apportion

• What’s the best piece to take away?
– It is a dictatorship, with the OS having the final say
– Use system feedback rather than blind fairness

• How to handle pigs?
– Quotas (user accounts), ejection (swapping), buy more

stuff (microsoft products), laws (freeway)
– A real problem: hard to distinguish responsible busy

programs from selfish, stupid pigs.

OS theme 2: performance

• Trick 1: exploit bursty applications
– Take stuff from idle guy and give to busy. Both happy.

• Trick 2: exploit skew
– 80% of time taken by 20% of code
– 10% of memory absorbs 90% of references
– Basis behind cache: place 10% in fast memory, 90% in slow,

seems like one big fast memory

• Trick 3: past predicts the future
– What’s the best cache entry to replace? If past = future, then

the one that is least-recently-used
– Works everywhere: past weather, stock market, classroom

understanding, …

The present and the future

• Today: Read Silberschatz/Galvin
– Skim chapter 1 (history, tiny bits of today’s lecture)
– Skim chapter 2 (hardware overview)

• Next: threads and stupid thread tricks
– Implementation and scheduling
– Synchronization, deadlocks, and communication
– Read Ch 4, skip 4.6

• Future:
– Memory management, virtual memory, file systems,

networks

