CSL373: Operating Systems

Instructor: Sorav Bansal
TA: Swati Sharma

Administrivia

* Class web page:
http://cse.iitd.ernet.in/~sbansal/cs|373

— All assignments, reference material, lecture notes
online

* Textbook: Operating System Concepts, 8t"
edition, by Silberschatz, Galvin and Gagne

http://cse.iitd.ernet.in/~sbansal/csl373

Course Topics

Threads & Processes
Concurrency & Synchronization

Scheduling
Virtual Memory
/O

Disks, File systems, Network file systems
Protection & Security
Virtual Machine Monitors

Course Goals

Introduce you to operating system concepts

Cover important systems concepts in general
— Caching, concurrency, memory management, 1/O, protection

Teach you to deal with large software systems
— Programming assignments bigger than any other course

— Warning: This course will probably be your heaviest this
semester

Prepare you for advanced systems courses (advanced
topics, recent developments, etc.)

Programming Assignments

* Implement parts of Pintos operating system

— Built for x86 hardware, you will use hardware
emulator

* Four implementation projects
— Threads
— Processes (Multiprogramming)
— Virtual Memory
— File System

* Implement projects in groups of up to 3 people

Grading

50% of final grade based on minors and major

50% of final grade based on projects

— For each project, 50% of grade based on test cases
e Please turn in working code, or no credit
— Remaining 50% based on design, outlined in
document
Do not look at other people’s solutions to
projects

Can read but don’t copy other OSes (Linux,
Open/FreeBSD, etc.)

Cite any code that inspired your code

What is an operating system?

* OS = primal mud of a computer system
— Makes reality pretty
— OS is magic to most people. This course rips open.

* OS =extended example of a complex system

— Huge, parallel, not understood, insanely expensive to build
* Win/NT: 8 years, 1000s of people. Still doesn’t work well.

— Most interesting things are complex: internet, air traffic control,
governments, weather, bf/gf, ...

* How to deal with complexity?
— Abstraction + modularity + iteration
— Fail early, fail often. Grow from something that works

— Unbelievably effective: int main() { puts(“hello”); } = millions of
lines of code! but don’t have to think about it.

What is an OS?

‘ emacs H gCC ‘

V\/\ hardware
Y g S /\/

e software between applications and reality:
— abstracts hardware and makes portable
— makes finite into (near)infinite
— provides protection

Abstraction

 What if? The entire software stack was one giant
event-driven loop.
— Possible, BUT clumsy
— Certainly not practical for general purpose computers

* Better way:

— Separate software into layers of abstraction
e e.g., 0S 2 JVM —> Java bytecode

— All programs are written (or compiled) to the
abstraction provided by the OS

* Abstractions may be different for different OS’es

— e.g., Windows program will not run on Linux even though same
underlying hardware

Why study operating systems?

Operating systems are a maturing field
* Most people use a handful of mature Oses
» Hard to get people to switch operating systems
* Hard to have impact with a new OS

High-performance servers are an OS issue
* Face many of the same issues as Oses

Resource consumption is an OS issue
» Battery life, radio spectrum, etc.

Security is an OS issue
* Hard to achieve security without a solid foundation

Scalability is an OS issue
e Large server farms need to solve hard OS problems

New “smart” devices need new OSes

OS evolution: step 0

* Simple OS: One program, one user, one machine
— Examples: early PCs, nintendo, cars, elevators, ...

App

hardware

— OS just a library of standard services. Examples:
standard device drivers, interrupt handlers, 1/0.

* Non-problems: No bad people. No bad programs.
A minimum number of complex interactions.

* Problem: poor utilization, expensive

OS evolution: step 1

Simple OS is inefficient

— If process is waiting for something, machine sits wasted.
(Seemingly) Simple hack:

— Run more than one process at once

— When one process blocks, switch to another

A couple of problems: what if a program
— Infinite loops?

— Starts randomly scribbling on memory?
OS adds protection

+ Interposition | acc | -
+ preemption

+ privilege
hardware

OS evolution: step 2

Simple OS is expensive

— One user = one computer (compare to computing lab)
(Seemingly) Simple hack:

— Allow more than one user at once

— Does machine run N times slower? Usually not! Key
observation: users bursty. If one idle, give other
resources.

Couple of problems:
— What if users are gluttons? Evils? Or just too many?

OS adds protection

— (notice: as we try to utilize resources, complexity
grows)

Protection at 50,000 feet

Goal: isolate bad programs and people

— main ideas: preemption + interposition + privileged ops
Pre-emption:

— Give application something, can always take it away
Interposition:

— OS between application and reality

— Track all pieces that application allowed to use (usually in a
table)

— On every access, look in table to check that access legal
Privileged/unprivileged mode

— Applications unprivileged (peasant)

— OS privileged (god)

— Protection operations can only be done in privileged mode.

Wildly successful protection examples

* Protecting CPU: pre-emption

— Clock interrupt: hardware periodically “suspends”
app, invokes OS

— OS decides whether to take CPU away

— Other times? Process blocks, I/0 completes, system
call

* Protecting memory: Address translation
— Every load and store checked for legality

— Typically use this machinery to translate to new value
(why??)

— (protecting disk memory similar)

Address translation

 |dea:

— Restrict what a program can do by restricting what it can
touch!

e Definitions:
— Address space: all addresses a program can touch
— Virtual address: addresses in process’ address space
— Physical address: address of real memory
— Translation: map virtual to physical address

* “Virtual memory”
— Translation done using per-process tables (page table)
— done on every load and store, so uses hardware for speed

— protection? If you don’t want process to touch a piece of
physical memory, don’t put translation in table

Quick example: Real systems have
holes

e OSes protect some things, ignore others

* Most will blow up if you run this simple program
int main() { while (1) fork(); }
Common response: freeze (unfreeze = reboot)
(if not, try allocating and touching memory too)
assume stupid, but not malicious users

* Duality: solve problems technically or socially
— technical: have process/memory quotas
— social: yell at idiots that crash machines
— another example: security: encryption vs laws

OS theme 1: fixed pie, infinite demand

 How to make pie go farther?
— Key: resource usage is bursty! So give to others when idle
— E.g., Waiting for web page? Give CPU to another process

— 1000s of years old: rather than one classroom, instructor, restaurant,
road, etc. per person, share. Same issues.

 BUT, more utilization = more complexity.
— How to manage? (E.g., 1 road per car versus highway)

— Abstraction (different lanes), synchronization (traffic lights), increase
capacity (build more roads)

 BUT, more utilization = more contention. What to do when illusion
breaks?

— Refuse service (busy signal), give up (VM swapping), backoff and retry
(ethernet), break (freeway)

Fixed pie, infinite demand (pt 2)

* How to divide pie?
— User? Yeah, right.
— Usually treat all apps same, then monitor and re-apportion

 What's the best piece to take away?
— Itis a dictatorship, with the OS having the final say
— Use system feedback rather than blind fairness

* How to handle pigs?

— Quotas (user accounts), ejection (swapping), buy more
stuff (microsoft products), laws (freeway)

— A real problem: hard to distinguish responsible busy
programs from selfish, stupid pigs.

OS theme 2: performance

e Trick 1: exploit bursty applications
— Take stuff from idle guy and give to busy. Both happy.

e Trick 2: exploit skew
— 80% of time taken by 20% of code
— 10% of memory absorbs 90% of references

— Basis behind cache: place 10% in fast memory, 90% in slow,
seems like one big fast memory

e Trick 3: past predicts the future

— What's the best cache entry to replace? If past = future, then
the one that is least-recently-used

— Works everywhere: past weather, stock market, classroom
understanding, ...

The present and the future

* Today: Read Silberschatz/Galvin
— Skim chapter 1 (history, tiny bits of today’s lecture)
— Skim chapter 2 (hardware overview)

* Next: threads and stupid thread tricks

— Implementation and scheduling
— Synchronization, deadlocks, and communication
— Read Ch 4, skip 4.6

* Future:

— Memory management, virtual memory, file systems,
networks

