
Lab 2
Help Session

Shailja Pandey
Shubhani

COL331/COL633 Operating Systems

Aim

◻ Assign1 -- Implemented a shell with
⬜ Long computation task as subroutine

⬜ Echo

⬜ Number of Key Pressed

◻ Assign2

⬜ Stackless Coroutines

⬜ Fibers

⬜ Non Preemptive or Cooperative Scheduling

⬜ Preemptive Scheduling

Subroutines

◻ Subroutines are spl cases of coroutines.

◻ When invoked, execution begins at the start
and once a subroutine exits, it is finished.

◻ An Instance of a subroutine only returns(yields)
once and doesn’t hold/save state between
invocations.

Coroutines/ Cooperative tasks/ Resumable
functions

◻ Coroutines are computer program that allow
multiple entry points for suspending and resuming
execution.

◻ The values of data local to a coroutine persist
between successive invocations.

◻ The execution of a coroutine is suspended as
control leaves it and resumption of that coroutine
starts from where it left off.

Classification

◻ Symmetric coroutine -- control-transfer
operation allows coroutines to explicitly pass
control among themselves.

◻ Asymmetric coroutine -- two control-transfer
operations: one for invoking a coroutine and
one for suspending it, the latter returning
control to the coroutine invoker.

Classification

◻ Stackless
⬜ heap-allocated data structure to contain

arguments and local variables for the coroutine

⬜ Scalable

⬜ Fast Context Switch

◻ Stackfull/Fiber

⬜ giving to each coroutine its own stack

⬜ Allows Nested coroutine calls

Labs

2.1 -- Asymmetric Stackless Coroutine

2.2 -- Asymmetric Stacklfull Coroutine -- Fiber

2.1 -- Asymmetric Stackless Coroutine

◻ We don’t have native C/C++ language support yet for coroutine

◻ Libraries like Boost.Coroutine, CO2 etc to support

◻ We have built a custom coroutine library -- util/coroutine.h

◻ f_t -- Structure to store values of “data local to a coroutine between

successive calls”

◻ coroutine_t -- store PC from where the execution has to resume

◻ coroutine_reset() -- Intialize PC=0 inside coroutine_t structure.

◻ h_begin() -- Control transfer to saved PC

◻ h_yield() -- stores PC of next instruction in coroutine_t and returns.

◻ h_end() -- resets the value of PC to zero and infinitely call yield.

Example

◻ 3*3 Matrix Generation
[1*1, 1*2, 1*3

 2*1, 2*2, 2*3

 3*1, 3*2, 3*3]

for(i=1;i<=3;i++){

 for(j=1;j<=3;j++){

ret=i*j; done=false; } }

done = true;

Example

Example

2.2 -- Fiber

◻ Implement a stack for each coroutine, and let local variables
stored on stack instead of a data structure.

◻ Results in 2 stacks when fiber is running -- main_stack, f_stack

◻ We have built a custom fiber library -- util/fiber.h

◻ stack_initN(f_stack, f_array, f_arraysize, f_start, f_args...):
creates a function stack at beginning of fiber and pushes
variable number of arguments(N in this case)

◻ stack_saverestore(from_stack,to_stack) : saves the context to
from_stack, restore the context from to_stack.

2.2 -- Fiber
 GCC Extended Asm

◻ To read and write C variables from assembly and to
perform jumps from assembler code to C labels.

◻ Extended asm syntax uses colons (‘:’) to delimit the
operand parameters after the assembler template.

◻ asm [volatile] (
AssemblerTemplate
: OutputOperands
[: InputOperands [: Clobbers]])

2.2 -- Fiber
 GCC Extended Asm

◻ To read and write C variables from assembly and to
perform jumps from assembler code to C labels.

◻ Extended asm syntax uses colons (‘:’) to delimit the
operand parameters after the assembler template.

◻ asm [volatile] (
AssemblerTemplate
: OutputOperands
[: InputOperands [: Clobbers]])

2.2 -- Fiber
 GCC Extended Asm

◻ Outputvariables
⬜ the names of C variables modified by the assembly

⬜ asmSymbolicName
■ position of the operand in the list of operands in the

assembler template.

⬜ Constraint
■ must begin with either ‘=’ (a variable overwriting an

existing value) or ‘+’ (when reading and writing)

■ describe where the value resides.

■ ‘r’ for register and ‘m’ for memory.

2.2 -- Fiber
 GCC Extended Asm

◻ inputvariables
⬜ C variables and expressions available to the

assembly code

⬜ asmSymbolicName
■ position of the operand in the list of operands in the

assembler template.

⬜ Constraint
■ describe where the value resides.

■ ‘r’ for register and ‘m’ for memory.

2.2 -- Fiber
 GCC Extended Asm

◻ Clobbers
⬜ calculations may require additional registers,

⬜ or the processor may overwrite a register as a side
effect of a particular assembler instruction.

⬜ In order to inform the compiler of these changes, list
them in the clobber list.

2.2 -- Fiber
util/fiber.h has MACRO written in GCC Extended Asm

2.2 -- Fiber
util/fiber.h has MACRO written in GCC Extended Asm

2.2 -- Fiber

2.2 -- Fiber

2.2 -- Fiber

2.2 -- Fiber

2.2 -- Fiber

Example

◻ 3*3 Matrix Generation
[1*1, 1*2, 1*3

 2*1, 2*2, 2*3

 3*1, 3*2, 3*3]

for(i=1;i<=3;i++){

 for(j=1;j<=3;j++){

ret=i*j; done=false; } }

done = true;

Example

Example

Preemptive vs Non-preemptive
Scheduling

● In preemptive scheduling,
○ the running task is interrupted by scheduler for some time.
○ the control is transferred to some other task.
○ the previously running task may be resumed at some later point in

time depending upon the scheduling algorithm.

● In non-preemptive scheduling,
○ a running task is executed till completion. It cannot be interrupted by

the scheduler.
○ control can be transferred to other tasks by the scheduler only when

the currently running task voluntarily releases(yeilds) the control to
the shell.

2.3 -- Non-preemptive scheduling

◻ So far, we have the capability to run only one fiber

◻ enhancing our shell to support multiple pending long
computation task.

◻ You shall support atleast two additional long
computation tasks as fibers (Retain previous menu
items).

◻ For these additional long computation tasks:
⬜ Same command/menu item may be entered multiple times, but at

max 3 times.

⬜ Total number of fibers in progress shall be limited to maximum of 5

Non-preemptive scheduling

◻ G:: GArg -> GResult H.:: HArg -> HResult

◻ We also want to support multiple invocations of
these fibers. (atmax 3).

◻ total number of instances for G and H should be <= 5.

◻ have to store 3*(GArg,GResult) and 3*(HArg,HResult)
in shellstate_t..

◻ What should be a good data structure for storing
these?
⬜ 3*(GArg,GResult) and 3*(HArg,HResult)

⬜ 5* Union of (GArg,GResult) and (HArg,HResult)

Non-preemptive scheduling

◻ G:: GArg -> GResult H.:: HArg -> HResult

◻ We also want to support multiple invocations of
these fibers. (atmax 3)

◻ total number of instances for G and H should be <= 5.

◻ have to store 3*(GArg,GResult) and 3*(HArg,HResult)
in shellstate_t..

Non-preemptive scheduling

◻ How to do scheduling?
◻ Let's say, we have a circular buffer/linked list of pending tasks
◻ When someone wanted to start a task, just check the resource

limitations.
◻ If available, change state and add into the queue.
◻ When current running fiber yeilds, invoke fiber_scheduler
◻ In each invocation of fiber_scheduler, just pick one fiber, and

execute.
◻ In next invocation - pick the next fiber and execute it.. so on.

Think of our own scheduling
(e.g. round robin)

2.4 -- Preemptive scheduling

◻ To achieve responsiveness, we added yield
points explicitly in 2.2.

◻ To achieve better responsiveness -- pre-emptive
scheduling

◻ Pre-emption requires support for timer interrupts,
which means we need to write interrupt handlers
and program Interrupt Descriptor Tables(IDTs).

Preemptive scheduling

◻ Timer : devices/lapic.h
⬜ one-shot LAPIC timer to raise an interrupt after a

specified time

◻ LAPIC

⬜ Local Advanced Programmable Interrupt Controller

⬜ It is hardwired to each CPU core

⬜ Software sets a "initial count“

⬜ The local APIC decrements the count until it reaches
zero, then generates a timer IRQ

Preemptive scheduling

◻ LAPIC Timer Modes
⬜ Periodic Mode

■ resets the current count to the initial count when the
current count reaches zero

■ begins decrementing the current count again

⬜ One-Shot Mode
■ it doesn't reset the current count to the initial count when

the current count reaches zero.

■ Software has to set a new count each time if it wants
more timer IRQs.

◻ Dynamic timers -- If there’s no fibers running,
there shouldn’t be any timers firing

Preemptive scheduling

◻ labs/fiber.cc and labs/fiber_scheduler.cc -- set
the timer.
⬜ dev_lapic_t object

⬜ reset_timer_count(int count)

◻ Decide the timer interval wisely.

Preemptive scheduling

◻ Interrupt handler : labs/preempt.h
⬜ ring0_preempt

⬜ To be written in assembly

⬜ should switch ‘funct_stack' to ‘main_stack’

◻ Interrupt Descriptor Table(IDT) : x86/except.cc

◻ Reuse shell_step_fiber_scheduler(2.3) to do the
scheduling

Preemptive scheduling

◻ Similar to
stack_saverestore

◻ It shall save and
restore FPU/SIMD
registers (context) as
well during the
context switch

Preemptive scheduling

◻ Out of two additional fibers implemented during
fiber_scheduler:

⬜ One of the fiber should be running normally with
non-preemptive yields (stack_saverestore) (This is to
trigger race condition between yield and ring0_preempt)

⬜ another fiber shall be modified to execute without yields in
between the computation (This is to check preemption is
working or not)

