
 

COL729 Major Exam Solutions 
Compiler Optimization 

Sem II, 2018-19 
Answer all 5 questions                                                                                       Max. Marks: 50 
 
 

1. Provide one example of a program and a data-flow analysis formulation where a 
region-based analysis would yield better solutions than data-flow analysis. 

a. Specify the data-flow analysis through the set of values, the partial-order 
operator, and the transfer functions 

b. Specify the composition, meet, and closure operators for the transfer 
functions for the region-based analysis 

c. Show an example, where the above-formulated region-based analysis would 
provide a more precise solution than the above-formulated data-flow analysis. 

[10] 
 
Constant-propagation 
 
Data flow analysis 
 
Domain : map (C) from program variable to a constant value 
Bottom  : NAC (not a constant) 
Top        : UI (uninitialized or not known) 
Direction : Forward 
Transfer function : For a statement (S), variable (x) and input map (in), 
TF(S,in)(x) = identity, If S in not an assignment to x 
                                   else if S is an assignment to x, substitute the values present in  
                                   input map (in) for each operand variable used by statement S,  

● if any operand value is NAC => TF(S,in)(x) = NAC 
● If any operand is UI =>  TF(S,in)(x) = UI 
● else TF(S,in)(x) = value after substitution  

 
Meet : If all predecessor send the variable to same constant C, then C else NAC 
 
Region based analysis 
 
Transfer function at exit of subregion S of a region R, fR,OUT[s] =  
⋀(Compose the transfer function for predecessor basic blocks Bi and S along all 
possible paths from entry of R to S) 
 
Meet : (f1 ∧F f2)(v) = f1(v) ∧ f2(v)  
 
Composition: (f1 o f2)(v) = f1( f2(v)) 



 

BB1->BB2 
BB2->BB3 
BB1->BB3 
 
BB1: 
x = 2; 
y = 3; 
 
BB2: 
x = 3; 
y = 2; 
 
BB3: 
z = x+y 
 

● Using dataflow analysis at the OUT of BB3 will give  z= NAC 
● Using above described region based analysis at the OUT of BB3 will give   z = 5 

 
 
 
 
 
 
 
 
 
 
  



 

2. Consider the following loop nest: 
 

 
 
Express the iteration space and the data space of the loop-nest above through the 
four-tuples <F,f,B,b> to represent the data-spaces and the iteration space. How many 
matrices do you need to specify?  What does each of them represent.  What are the 
dimensions and the values of these matrices? [5] 
 
 
 
Iteration space: 
B,b for each loop nest specifying the lower and upper bound for iteration variable 
  
 
B = [  1  0  0  0  0  0  0 
           -1  0  0  0  0  0  1 

 0  1  0  0  0  0  0 
 0 -1  0  0  0  0  1 
 0  0  1  0  0  0  0 
 0  0 -1  0  0  0  1 
-B  0  0  1  0  0  0 
 B  0  0 -1  0  0  0 
 0 -B  0  0  1  0  0 
 0  B  0  0 -1  0  0 
 0  0 -B  0  0  1  0 
 0  0  B  0  0 -1  0 ] 

 
 

 
 
 
i = [ ii` 

jj` 
kk` 
i 
j 
k 
n/B   ] 

 
 
 
 

b = [  0 
-1 
 0 
-1 
 0 
-1 
 0 
B-1 
 0 
B-1 
 0 
B-1    ] 

 
 
Data space: 
F,f for each static access specifying the affine function of loop index variables that produce 
the array index for all dimensions 
 
 
 
 



 

Z[i , j] 
 
 
 
 
F = [ 0  0  0  1  0  0  0 

0  0  0  0  1  0  0 ] 
 
 
 

i = [ ii` 
jj` 
kk` 
i 
j 
k 
n/B   ] 

 
 
f = [ 0 

0   ] 
 
 

 
 
X[i , k] 
 
 
 
 
F = [ 0  0  0  1  0  0  0 

0  0  0  0  0  1  0 ] 
 
 
 

i = [ ii` 
jj` 
kk` 
i 
j 
k 
n/B   ] 

 
 
f = [ 0 

0   ] 
 

 
 
 
 
 
Y[k , j] 
 
 
 
 
F = [ 0  0  0  0  0  1  0 

0  0  0  0  1  0  0 ] 
 
 
 

i = [ ii` 
jj` 
kk` 
i 
j 
k 
n/B   ] 

 
 
f = [ 0 

0   ] 
 

 
 
  



 

 
3. Consider the following loop-nest 
 
for (i = 0; i <= 1000; i++) 
  for (j = 0; j <= min(750,i); j++) 
    X[j+1] = (1 / 3)  * (X[j] + X[j+1] + X[j+2]); 
 
 
 
Use Fourier-Motzkin elimination to transform this loop with outer-axis k=i+j.  Show the 
working of the algorithm succinctly, to show how you obtain the result.  [8] 
 
Iteration space: 
i ≥ 0, i ≤ 1000, j ≥ 0, j ≤ 750, j ≤ i 
 
Introduce k = i+j 
 
Let’s eliminate variable j by using j = k-i 
 
New iteration space constraints: 
i ≥ 0, i ≤ 1000, k-i ≥ 0, k-i ≤ 750, k-i ≤ i 
or 
i ≥ 0, i ≤ 1000, k ≥ i, k ≤ i+750, k ≤ 2*i 
or 
i ≥ 0, i ≤ 1000,  i≤ k,  i ≥ k-750, 2*i ≥ k  
 (1)      (2)         (3)       (4)         (5) 
 
k should be outer-axis, so project away i from constraints: 
 
Using 1 and 2, 0 ≤ 1000 
Using 1 and 3, 0 ≤ k 
Using 4 and 2, k-750 ≤ 1000  =>  k ≤ 1750 
Using 4 and 3, k-750 ≤ k  =>  -750 ≤ 0 
Using 5 and 2, k ≤ 2*1000 => k ≤ 2000  
Using 5 and 3, k ≤ 2*k 
 
Constraints for k: 
k ≥ 0, k ≤ 1750 
 
Constraints for i: 
i ≥ 0, i ≤ 1000, i ≤ k, i ≥ k-750, i ≥  ⌈k/2⌉ 
 
i ≥ max( ⌈k/2⌉, k-750), i ≥  0 is redundant as ⌈k/2⌉ ≥  0 for k ≥  0 
i ≤ min(k,1000) 
 



 

 
for (k = 0; k <= 1750; k++) 
  for (i = max( ⌈k/2⌉, k-750); i <= min(k,1000); i++) 
    X[k-i+1] = (1 / 3)  * (X[k-i] + X[k-i+1] + X[k-i+2]); 
 
 
 
Similarly can be done for eliminating i instead of j 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
4. Suppose there are two array accesses  
 
A[2*i,  j,  i + j] and A[2*i + 4, j - 2, i + j] 
 
In a 3-deep loop nest, with indices i, j, and k from the outer to the inner loop. What are all the 
types of temporal reuse (self-temporal and group-temporal) in this loop nest?  Ignore spatial 
reuse. 
[10] 
 
 
 
Self-temporal reuse 
 
For A[2*i, j, i+j], 
 
 
F  =  [ 2  0  0 

0  1  0 
1  1  0  ] 

 

f  =  [ 0  
0  
0  ] 

 
 
For A[2*i + 4, j-2, i+j], 
 
 
F  =  [ 2  0  0 

0  1  0 
1  1  0  ] 

 

f  =  [  4  
-2  
 0  ] 

 
 
 
In both the above cases,  
Rank of F, r= 2 and  loop nest depth d = 3 
The difference between iteration variables (i,j,k), (i`,j`,k`) which access the same array index 
is given by nullspace of F : 
2(i-i`) = 0, (j-j`) = 0; i.e. i = i`, j = j`  
O(n) self temporal reuse, i.e. an element is accessed O(n) times where n is the num of 
iterations in loop with iteration variable  k 
 
 
 
 
 
 
 



 

Group-temporal reuse 
 
The access have group temporal reuse, if there exists (i,j,k) and (i`,j`,k`), such that 
F * ([i,j,k]T - [i`,j`,k`]T ) = f2-f1 
 
 
 
  
 [   2  0  0 [  i-i` [   4 
     0  1  0 *    j-j` =    -2 
     1  1  0   ]   k-k`  ]     0  ] 
 
or 
 
i-i` = 2 
j-j` = -2 
k-k`  can be arbitrary from 0 to n, where n is the number of iterations in loop with iteration 
variable k 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
5. Consider the following program: 
 
for (i = 0; i < n; i++) { 
    A[i + 1] = A[i + 1]  * B[i + 1];  //S1 
    for (j = i; j < n; j++) { 
        C[i,j] = C[i,j] + D[0,i+1,2*j];  //S2 
        A[j] = A[j] * C[i,j];  //S3 
    } 
} 
 
Apply the algorithm to find parallelism with a constant number of synchronizations to this 
loop nest. 

1. Show the queries you make to construct the program dependence graph. How many 
ILP queries did you have to make? [4] 

2. After inserting a constant number of synchronizations, parallelize each separate loop 
nest (with no synchronization) if possible. 

a. What are the space-partition constraints?  [3] 
b. Show the steps involved in solving the space-partition constraints.  [3] 
c. What is the solution to your space-partition constraints  [2] 
d. What is the generated code before eliminating empty iterations and tests from 

the inner loop (i.e., before applying Fourier Motzkin and before doing 
case-analysis)?  [1] 

e. What is the generated code after applying Fourier Motzkin at each level of the 
iteration.  Show the case analysis and the final generated code at each step. 
[4] 

 
 

1. ILP Queries (Total 9 queries, one for each pair of statements) 
Edge between S1,S1: For both array A  
∃ i,i`, s.t. 0 ≤ i < n, 0 ≤ i` < n, i` > i,  i` + 1 = i + 1 

 
Edge between S2,S2: For both array C 
∃ i,i`,j,j`  s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j` < n, 
(i`,j`) > (i,j),  i` = i , j` = j 
 
Edge between S3,S3: For both array A 
∃ i,i`,j,j`  s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j` < n, 
(i`,j`) > (i, j)  j` = j 
 
Edge between S1,S2 and S2,S1: 
No dependency as different arrays are accessed 
 



 

 
Edge between S1,S3: 
∃ i,i`,j, s.t. 0 ≤ i < n, 0 ≤ i` < n, i` ≤ j < n,  i < i`, i + 1 = j 

 
Edge between S3,S1: 
∃ i,i`,j, s.t. 0 ≤ i < n, 0 ≤ i` < n, i` ≤ j < n,  i` < i, i + 1 = j 

 
Edge between S2,S3: 
∃ i,i`,j,j`  s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j < n,  ((i < i`) or (i=i` and j ≤ j`))  
i = i` and j = j` 

 
Edge between S3,S2: 
∃ i,i`,j,j`  s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j < n,  ((i` < i) or (i=i` and j` < j))  
i = i` and j = j` 

 
PDG: 
S1 -> S3 
S3 -> S1 
S3 -> S3 
S2 -> S3 
 
 
2. Constant number of synchronizations: 
We will have a separate loop nest for each SCC in the PDG. 
In this case, S1,S3 form 1 SCC and S2 is another SCC. Further, S3 depends on S2, 
so S2 loop will be executed first and S3 will be executed later after synchronization 
 
Loop1: 
for (i = 0; i < n; i++) { 
    for (j = i; j < n; j++) { 
        C[i,j] = C[i,j] + D[0,i+1,2*j];  //S2 
    } 
} 
barrier(); 
Loop2: 
for (i = 0; i < n; i++) { 
    A[i + 1] = A[i + 1]  * B[i + 1];  //S1 
    for (j = i; j < n; j++) { 
        A[j] = A[j] * C[i,j];  //S3 
    } 
} 



 

 
 
Space partition constraints 
 
For loop 1, S2 is not dependent on itself, so we can run all iterations in parallel. 
Assuming a 2-D processor space,  
The space partition constraints are: 
For all (i,j) and (i`,j`) such that, 
i,i` >= 0,   j >= i, j` >= i`,   i,i` < n,    j,j` < n, i = i`,  j=j` 
 
[ p1,  p2   *   [ i    +  [ p5     =    [ p1`,  p2`   *   [ i`    +  [ p5`  
  p3, p4 ]        j ]         p6 ]           p3`, p4` ]        j` ]        p6` ] 
 
Substituting i = i` and j=j`, we get, 
(p1-p1`) * i + (p2-p2`) * j + (p5-p5`) = 0 
(p3-p3`) * i + (p4-p4`) * j + (p6-p6`) = 0 
 
The simplest solution to this is 
[ 1  0   * [ p1     +   [ 0     =   [  i 
  0  1]      p2  ]         0 ]           j  ] 
 
or 
p1 = i and p2 = j 
 
The processor space index variables p1 = i and p2 = j  will have  range 
0 ≤ p1 < n, and i ≤ p2 < n, 
 
Applying Fourier-motzkin to eliminate i from constraints for p2, we get 
0 ≤ p1 < n, and p1 ≤ p2 < n, 
 
 
For loop2, S3 is dependent on itself and S1 and S3 are also interdependent. 
 
For S1 to S3 interdependence, the space-partition constraint imposed are: 
For all (i) and (i`,j`) such that, 
 
i,i` >= 0,   j` >= i`,   i,i` < n,    j` < n, i+1 = j` 
 
[ p1     *   [ i ]    +  [ p5     =    [ p1`,  p2`   *   [ i`    +  [ p5`  
  p3 ]                      p6 ]           p3`, p4` ]        j` ]        p6` ] 
 
p1 * i + p5 = p1` * i` + p2`*j` + p5` 



 

p3 * i + p6 = p3` * i` + p4`*j` + p6` 
 
or 
 
p1 * i + p5 = p1` * i` + p2`*(i+1) + p5` 
p3 * i + p6 = p3` * i` + p4`*(i+1) + p6` 
 
or 
 
i * ( p1-p2`) + p5 -p2`-p5` = p1` * i`  
i * ( p3-p4`) + p6 -p6`-p4` = p3` * i`  
 
or 
 
p1 = p2`,  p3 = p4`,  p5 = p2` + p5`,  p6 = p6` + p4`,  p1` = 0,  p3` = 0 
 
The simplest solution for the above constraints are: 
 
p1 = p2` = 1,  p3 = p4` = 1,  p5 = 0, p5` = -1,  p6 = 0, p6` = -1,  p1` = 0,  p3` = 0 
 
For S2,  
[ p1   =   [ 1     *   [ i ]    +  [ 0     =    [ i  
  p2 ]        1 ]                      0 ]            i ] 
 
For S3,  
 [ p1   =   [ 0,  1   *   [ i`    +  [ -1     =  [  j`-1  
   p2 ]        0, 1 ]        j` ]        -1 ]          j` -1 ] 
 
The processor space index variables for S1,  p1 = p2 = i  will have  range 
0 ≤ p1,p2 < n 
 
The processor space index variables for S3, p1 = p2 = j-1 will have  range 
i-1 ≤ p1,p2 < n-1 
 
Applying Fourier-motzkin to eliminate i from constraints for p1,p2, we get 
-1 ≤ p1,p2 < n-1 
 
 
 
 
 
 



 

The generated code is: 
 
Loop1: 
for (p1 = 0; p1 < n; p1++) { 
    for (p2 = p1; p2 < n; p2++) { 
        for (i = 0; i < n; i++) { 
            for (j = i; j < n; j++) { 
                 if( p1 == i and p2 ==j) 
                     C[i,j] = C[i,j] + D[0,i+1,2*j];  //S2 
} } } } 
  
barrier(); 
Loop2: 
for (p1 = -1; p1 < n; p1++) { 
    for (p2 = -1; p2 < n; p2++) { 
        for (i = 0; i < n; i++) { 
            if(p1 == i and p1 == p2)  
                A[i + 1] = A[i + 1]  * B[i + 1];  //S1 
            for (j = i; j < n; j++) { 
                if(p1 == j-1 and p1 == p2)  
                    A[j] = A[j] * C[i,j];  //S3 
        } 
    } 
} 
 
 
Fourier-Motzkin for S1 
  p1  ≤  i ≤ p1 ,    0   ≤  i < n,     -1 ≤ p1  < n,     p1  ≤  p2 ≤ p 1  1 ≤ p2  < n  
 
 =>  0 ≤ p1  < n, p 2 = p1  
 
 
Fourier-Motzkin for S3 
  0  ≤  i < n,  p 1 +1  ≤  j ≤ p1+1 ,    i  ≤  j < n,     -1 ≤ p1  < n,     p1  ≤  p2 ≤ p 1 1 ≤ p2  < n  
 
 =>  -1 ≤ p1  < n-1, p 2 = p1 
  
 
 
 
 
 



 

 
 
Loop1: 
for (p1 = 0; p1 < n; p1++) { 
    for (p2 = p1; p2 < n; p2++) { 
        for (i = 0; i < n; i++) { 
            for (j = i; j < n; j++) { 
                 if( p1 == i and p2 ==j) 
                     C[p1,p2] = C[p1,p2] + D[0, p1+1, 2*p2];  //S2 
} } } } 
 
  
barrier(); 
 
Loop2: Case analysis 
p1 = -1; 
for (i = 0; i < n; i++) { 
    for (j = i; j < n; j++) { 
        if(p1 == j-1)  
           A[j] = A[j] * C[i, j ];  //S3 
    } 
} 
 
for (p1 = 0; p1 < n-1; p1++) { 
    for (i = 0; i < n; i++) { 
        if(p1 == i)  
            A[i + 1] = A[i + 1]  * B[i + 1];  //S1 
        for (j = i; j < n; j++) { 
            if(p1 == j-1)  
                A[j] = A[j] * C[i,j];  //S3 
    } 
} 
 
p1 = n-1 
for (i = 0; i < n; i++) { 
    if(p1 == i)  
        A[i + 1] = A[i + 1]  * B[i + 1];  //S1 
} 
 
 
 
 



 

Fourier Motzkin  
For S3 in case 1: 
i ≤  j ≤ n-1,     p1+1 ≤ j  ≤  p1+1  =>  
i ≤  p1+1 ,  p1+1 ≤ n-1 , -1 ≤ p 1 ≤ -1 => 
i  ≤ 0, 1 ≤ n,  ,  0  ≤  i < n  => i =0, n > 0  
 
//  p1 = -1; 
if(n > 0)  A[0] = A[0] * C[0, 0 ];  //S3 
 
For S1 in case 2: 
0 ≤  i ≤ n-1,     p1 ≤ i  ≤  p1  =>  
0 ≤  p1 ,  p1 ≤ n-1 , 0 ≤ p 1 ≤ n-2 => 
0 ≤  n-1 , 0 ≤ n-2 => n > 1 
 
For S3 in case 2: 
i ≤  j ≤ n-1,     p1+1 ≤ j  ≤  p1+1  =>  
i ≤  p1+1 ,  0  ≤  i ≤ n-1 => 
0  ≤  i ≤ min(n-1, p 1+1) => 
 
For S1 in case 3: 
0 ≤  i ≤ n-1,     p1 ≤ i  ≤  p1  =>  
0 ≤  p1 ,  p1 ≤ n-1 , n-1 ≤ p 1 ≤ n-1 => 
0 ≤  n-1 => n > 1 
 
 
Loop2: 
//  p1 = -1; 
if(n > 0)  A[0] = A[0] * C[0, 0 ];  //S3 
 
for (p1 = 0; p1 < n-1; p1++) { 
    A[p1 + 1] = A[p1 + 1]  * B[p1 + 1];  //S1  
    for (i = 0; i ≤ min(n-1, p1 + 1); i++) { 
        A[p1 + 1] = A[p1 + 1] * C[i,p1 + 1];  //S3 
    } 
} 
 
// p1 = n-1 
A[n] = A[n]  * B[n];  //S1 
 


