COL729 Major Exam Solutions

Compiler Optimization

Sem II, 2018-19

1. Provide one example of a program and a data-flow analysis formulation where a region-based analysis would yield better solutions than data-flow analysis.
a. Specify the data-flow analysis through the set of values, the partial-order operator, and the transfer functions
b. Specify the composition, meet, and closure operators for the transfer functions for the region-based analysis
c. Show an example, where the above-formulated region-based analysis would provide a more precise solution than the above-formulated data-flow analysis.

Constant-propagation

Data flow analysis

Domain : map (C) from program variable to a constant value
Bottom : NAC (not a constant)
Top : UI (uninitialized or not known)
Direction : Forward
Transfer function : For a statement (S), variable (x) and input map (in), $\operatorname{TF}(\mathrm{S}, \mathrm{in})(\mathrm{x})=$ identity, If S in not an assignment to x else if S is an assignment to x, substitute the values present in input map (in) for each operand variable used by statement S,

- if any operand value is NAC $=>\operatorname{TF}(\mathrm{S}, \mathrm{in})(\mathrm{x})=$ NAC
- If any operand is $\mathrm{UI}=>\operatorname{TF}(\mathrm{S}, \mathrm{in})(\mathrm{x})=\mathrm{UI}$
- else $\operatorname{TF}(\mathrm{S}, \mathrm{in})(\mathrm{x})=$ value after substitution

Meet : If all predecessor send the variable to same constant C, then C else NAC

Region based analysis

Transfer function at exit of subregion S of a region $R, f_{R, O U T[s]}=$ \wedge (Compose the transfer function for predecessor basic blocks B_{i} and S along all possible paths from entry of R to S)

Meet: $\left(f_{1} \wedge_{F} f_{2}\right)(v)=f_{1}(v) \wedge f_{2}(v)$
Composition: $\left(f_{1} \circ f_{2}\right)(v)=f_{1}\left(f_{2}(v)\right)$

BB1->BB2
BB2->BB3
BB1->BB3

BB1:
$x=2$;
$y=3 ;$

BB2:
$x=3 ;$
$y=2 ;$

BB3:
$z=x+y$

- Using dataflow analysis at the OUT of BB3 will give $z=$ NAC
- Using above described region based analysis at the OUT of BB3 will give $z=5$

2. Consider the following loop nest:
1) for (ii $=0$; $i i<n$; $i i=i i+B)$
2) for ($\mathrm{jj}=0 ; \mathrm{jj}<\mathrm{n}$; $\mathrm{jj}=\mathrm{jj}+\mathrm{B}$)
3)
4)

for ($k k=0 ; k k<n ; k k=k k+B)$
5)
for (i = ii; $i<i i+B ; i++$)
for ($\mathrm{j}=\mathrm{j} \mathrm{j} ; \mathrm{j}<\mathrm{jj+B} ; \mathrm{j}++$)
6)
7)

$$
\text { for }(k=k k ; k<k k+B ; k++)
$$

Z[i,j] = $\mathrm{z}[\mathrm{i}, \mathrm{j}]+\mathrm{X}[i, k] * Y[k, j] ;$

Express the iteration space and the data space of the loop-nest above through the four-tuples $\langle\mathbf{F}, \mathbf{f}, \mathbf{B}, \mathbf{b}>$ to represent the data-spaces and the iteration space. How many matrices do you need to specify? What does each of them represent. What are the dimensions and the values of these matrices? [5]

Iteration space:

B, b for each loop nest specifying the lower and upper bound for iteration variable
$B=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$
$\mathrm{b}=\left[\begin{array}{c}0\end{array}\right.$
-1000001
-1
0100000
0
$\begin{array}{cccccccc}0 & -1 & 0 & 0 & 0 & 0 & 1 & i=\left[\begin{array}{ll}\text { ii }\end{array}\right]-1\end{array}$
0010000 jj 0
$0 \begin{array}{lllllll}0 & -1 & 0 & 0 & 0 & 1 & k k \\ -1\end{array}$
$-B 0010000$ i 0
B 0 0-1 0000 j B-1
$0-B 001000$ k 0
0 B 0 0-1 0 0 n/B] B-1
$00-\mathrm{B} 0010$ 0
00 B $00-10]$ B-1]

Data space:

F,f for each static access specifying the affine function of loop index variables that produce the array index for all dimensions
$\mathbf{Z}[\mathrm{i}, \mathrm{j}]$

$\mathbf{X}[\mathbf{i}, k]$

Y[k, j]

3. Consider the following loop-nest

$$
\begin{aligned}
& \text { for }(i=0 ; i<=1000 ; i++) \\
& \text { for }(j=0 ; j<=\min (750, i) ; j++) \\
& \quad X[j+1]=(1 / 3){ }^{*}(X[j]+X[j+1]+X[j+2]) \text {; }
\end{aligned}
$$

Use Fourier-Motzkin elimination to transform this loop with outer-axis $\mathrm{k}=\mathrm{i}+\mathrm{j}$. Show the working of the algorithm succinctly, to show how you obtain the result. [8]

Iteration space:

$\mathrm{i} \geq 0, \mathrm{i} \leq 1000, \mathrm{j} \geq 0, \mathrm{j} \leq 750, \mathrm{j} \leq \mathrm{i}$
Introduce $\mathrm{k}=\mathrm{i}+\mathrm{j}$

Let's eliminate variable j by using $\mathrm{j}=\mathrm{k}$ - i

New iteration space constraints:

$\mathrm{i} \geq 0, \mathrm{i} \leq 1000, \mathrm{k}-\mathrm{i} \geq 0, \mathrm{k}-\mathrm{i} \leq 750, \mathrm{k}-\mathrm{i} \leq \mathrm{i}$
or
$\mathrm{i} \geq 0, \mathrm{i} \leq 1000, \mathrm{k} \geq \mathrm{i}, \mathrm{k} \leq \mathrm{i}+750, \mathrm{k} \leq 2^{*} \mathrm{i}$
or
$i \geq 0, i \leq 1000, i \leq k, i \geq k-750,2^{*} i \geq k$
(1)
(2)
(3)
(4)
(5)

k should be outer-axis, so project away i from constraints:

Using 1 and $2,0 \leq 1000$
Using 1 and $3,0 \leq k$
Using 4 and $2, k-750 \leq 1000=>k \leq 1750$
Using 4 and $3, k-750 \leq k=>-750 \leq 0$
Using 5 and $2, k \leq 2 * 1000=>k \leq 2000$
Using 5 and $3, k \leq 2^{*} k$

Constraints for k :

$k \geq 0, k \leq 1750$

Constraints for i :

$\mathrm{i} \geq 0, \mathrm{i} \leq 1000, \mathrm{i} \leq \mathrm{k}, \mathrm{i} \geq \mathrm{k}-750, \mathrm{i} \geq\lceil\mathrm{k} / 2\rceil$
$\mathrm{i} \geq \max (\lceil\mathrm{k} / 2\rceil, \mathrm{k}-750), \mathrm{i} \geq 0$ is redundant as $\lceil\mathrm{k} / 2\rceil \geq 0$ for $\mathrm{k} \geq 0$
$i \leq \min (k, 1000)$

```
for \((k=0 ; k<=1750 ; k++)\)
    for \((\mathrm{i}=\max (\lceil\mathrm{k} / 2\rceil, \mathrm{k}-750) ; \mathrm{i}<=\min (\mathrm{k}, 1000) ; \mathrm{i}++)\)
    \(X[k-i+1]=(1 / 3) *(X[k-i]+X[k-i+1]+X[k-i+2])\);
```

Similarly can be done for eliminating instead of \boldsymbol{j}
4. Suppose there are two array accesses
$A\left[2^{*} \mathrm{i}, \mathrm{j}, \mathrm{i}+\mathrm{j}\right]$ and $\mathrm{A}\left[2^{*} \mathrm{i}+4, \mathrm{j}-2, \mathrm{i}+\mathrm{j}\right]$
In a 3-deep loop nest, with indices i , j , and k from the outer to the inner loop. What are all the types of temporal reuse (self-temporal and group-temporal) in this loop nest? Ignore spatial reuse.
[10]

Self-temporal reuse

For $\mathrm{A}\left[2^{*} \mathrm{i}, \mathrm{j}, \mathrm{i}+\mathrm{j}\right]$,
$F=\left[\begin{array}{lll}2 & 0 & 0\end{array}\right.$
$\mathrm{f}=[0$
010
0
110]
0]
For $A\left[2^{\star} \mathrm{i}+4, \mathrm{j}-2, \mathrm{i}+\mathrm{j}\right]$,
$F=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right] \quad f=\left[\begin{array}{c}4 \\ -2 \\ 0\end{array}\right]$

In both the above cases,
Rank of $\mathrm{F}, \mathrm{r}=2$ and loop nest depth $\mathrm{d}=3$
The difference between iteration variables ($\mathrm{i}, \mathrm{j}, \mathrm{k}$), ($\mathrm{i}^{\prime}, \mathrm{j}, \mathrm{k}^{\prime}$) which access the same array index is given by nullspace of F :
$2\left(i-i^{\prime}\right)=0,\left(j-j^{\prime}\right)=0$; i.e. $i=i^{\prime}, j=j$
$O(n)$ self temporal reuse, i.e. an element is accessed $O(n)$ times where n is the num of iterations in loop with iteration variable k

Group-temporal reuse

The access have group temporal reuse, if there exists (i, j, k) and (i^{i}, j, k), such that $F^{*}\left([i, j, k]^{\top}-\left[i^{\prime}, j, k^{\prime}\right]^{\top}\right)=f_{2}-f_{1}$

or
$i-i `=2$
$j-j=-2$
$\mathrm{k}-\mathrm{k}$ can be arbitrary from 0 to n , where n is the number of iterations in loop with iteration variable k
5. Consider the following program:

```
for (i = 0; i < n; i++) {
    A[i + 1] = A[i + 1] * B[i + 1]; //S1
    for (j = i; j < n; j++) {
        C[i,j] = C[i,j] + D[0,i+1,2*j]; //S2
        A[j] = A[j] * C[i,j]; //S3
    }
}
```

Apply the algorithm to find parallelism with a constant number of synchronizations to this loop nest.

1. Show the queries you make to construct the program dependence graph. How many ILP queries did you have to make? [4]
2. After inserting a constant number of synchronizations, parallelize each separate loop nest (with no synchronization) if possible.
a. What are the space-partition constraints?
b. Show the steps involved in solving the space-partition constraints. [3]
c. What is the solution to your space-partition constraints [2]
d. What is the generated code before eliminating empty iterations and tests from the inner loop (i.e., before applying Fourier Motzkin and before doing case-analysis)? [1]
e. What is the generated code after applying Fourier Motzkin at each level of the iteration. Show the case analysis and the final generated code at each step. [4]
3. ILP Queries (Total 9 queries, one for each pair of statements)

Edge between S1,S1: For both array A
$\exists \mathrm{i}, \mathrm{i}^{\prime}$, s.t. $0 \leq \mathrm{i}<\mathrm{n}, 0 \leq \mathrm{i}^{\prime}<\mathrm{n}, \mathrm{i}^{`}>\mathrm{i}, \mathrm{i}^{`}+1=\mathrm{i}+1$

Edge between S2,S2: For both array C
$\exists \mathrm{i}, \mathrm{i}$, ,j, ${ }^{\prime}$ s.t. $0 \leq i<n, 0 \leq i^{i}<n, i \leq j<n, i^{\prime} \leq j^{\prime}<n$, $\left(i^{\prime}, j^{\prime}\right)>(i, j), \quad i^{`}=i, j^{\prime}=j$

Edge between S3,S3: For both array A
$\exists \mathrm{i}, \mathrm{i}^{\prime}$,j, ${ }^{\prime}$ s.t. $0 \leq i<n, 0 \leq \mathrm{i}^{\circ}<\mathrm{n}, \mathrm{i} \leq \mathrm{j}<\mathrm{n}, \mathrm{i}^{\mathrm{i}} \leq \mathrm{j}^{\mathrm{j}}<\mathrm{n}$, $\left(\mathrm{i}^{\prime}, \mathrm{j}^{\prime}\right)>(\mathrm{i}, \mathrm{j}) \mathrm{j}^{\prime}=\mathrm{j}$

Edge between S1,S2 and S2,S1:
No dependency as different arrays are accessed

Edge between S1,S3:
$\exists \mathrm{i}, \mathrm{i}, \mathrm{j}$, s.t. $0 \leq \mathrm{i}<\mathrm{n}, 0 \leq \mathrm{i}^{\prime}<\mathrm{n}, \mathrm{i}^{\prime} \leq \mathrm{j}<\mathrm{n}, \mathrm{i}<\mathrm{i}^{\prime}, \mathrm{i}+1=\mathrm{j}$

Edge between S3,S1:
$\exists \mathrm{i}, \mathrm{i}^{\mathrm{i}}, \mathrm{j}$, s.t. $0 \leq \mathrm{i}<\mathrm{n}, 0 \leq \mathrm{i}^{\prime}<\mathrm{n}, \mathrm{i}^{\prime} \leq \mathrm{j}<\mathrm{n}, \mathrm{i}^{\prime}<\mathrm{i}, \mathrm{i}+1=\mathrm{j}$

Edge between S2,S3:
$\exists \mathrm{i}, \mathrm{i}, \mathrm{j}, \mathrm{j}$ s.t. $0 \leq \mathrm{i}<\mathrm{n}, 0 \leq \mathrm{i}^{ }<\mathrm{n}, \mathrm{i} \leq \mathrm{j}<\mathrm{n}, \mathrm{i}^{\prime} \leq \mathrm{j}<\mathrm{n},\left(\left(\mathrm{i}<\mathrm{i}^{\prime}\right)\right.$ or $\left(\mathrm{i}=\mathrm{i}^{\prime}\right.$ and $\left.\left.\mathrm{j} \leq \mathrm{j}^{\prime}\right)\right)$ $i=i$ and $j=j$

Edge between S3,S2:
$\exists \mathrm{i}, \mathrm{i}, \mathrm{j}, \mathrm{j}$ s.t. $0 \leq \mathrm{i}<\mathrm{n}, 0 \leq \mathrm{i}^{\prime}<\mathrm{n}, \mathrm{i} \leq \mathrm{j}<\mathrm{n}, \mathrm{i}^{\prime} \leq \mathrm{j}<\mathrm{n},\left(\mathrm{i}^{`}<\mathrm{i}\right)$ or $\left(\mathrm{i}=\mathrm{i}^{\prime}\right.$ and $\left.\mathrm{j}^{\prime}<\mathrm{j}\right)$) $\mathrm{i}=\mathrm{i}^{\prime}$ and $\mathrm{j}=\mathrm{j}$

PDG:
S1 -> S3
S3 -> S1
S3 -> S3
S2 -> S3

2. Constant number of synchronizations:

We will have a separate loop nest for each SCC in the PDG.
In this case, S1,S3 form 1 SCC and S2 is another SCC. Further, S3 depends on S2, so S2 loop will be executed first and S3 will be executed later after synchronization

Loop1:

```
for (i=0; i < n; i++) {
    for (j = i; j < n; j++) {
        C[i,j] = C[i,j] + D[0,i+1,2*j];//S2
    }
}
barrier();
Loop2:
for (i=0; i < n; i++) {
    A[i+1] = A[i+1] * B[i+1]; //S1
    for (j = i; j < n; j++) {
        A[j] = A[j] * C[i,j]; //S3
    }
}
```


Space partition constraints

For loop 1, S2 is not dependent on itself, so we can run all iterations in parallel.
Assuming a 2-D processor space,
The space partition constraints are:
For all (i, j) and ($\left(\mathrm{i}, \mathrm{j}^{\mathrm{j}}\right)$ such that,
$i, i^{\prime}>=0, \quad j>=i, j^{\prime}>=i^{\prime}, \quad i, i^{i}<n, \quad j, j^{`}<n, i=i, j=j$

```
[p1, p2 * [i + [p5 = [p1`, p2` * [i` + [p5`
p3,p4] j] p6] p3`,p4`] j] p6`]
```

Substituting $\mathrm{i}=\mathrm{i}^{\prime}$ and $\mathrm{j}=\mathrm{j}^{\prime}$, we get,
$\left(p 1-p 1^{`}\right) * i+(p 2-p 2 `) * j+\left(p 5-p 5{ }^{`}\right)=0$
$\left(p 3-p 3^{`}\right){ }^{*} i+(p 4-p 4 `)^{*} j+(p 6-p 6 `)=0$

The simplest solution to this is

$$
\left.\left.\left.\begin{array}{ccc}
{\left[\begin{array} { l l }
{ 1 } & { 0 }
\end{array} { } ^ { * } \left[p_{1}+\left[\begin{array}{c}
0 \\
0
\end{array} 1\right.\right.\right.}
\end{array}\right] \begin{array}{c}
{[i} \\
p_{2}
\end{array}\right] \quad 0\right]\left[\begin{array}{c}
\text { j }]
\end{array}\right.
$$

or
$\mathrm{p}_{1}=\mathrm{i}$ and $\mathrm{p}_{2}=\mathrm{j}$

The processor space index variables $p_{1}=i$ and $p_{2}=j$ will have range $0 \leq \mathrm{p}_{1}<\mathrm{n}$, and $\mathrm{i} \leq \mathrm{p}_{2}<\mathrm{n}$,

Applying Fourier-motzkin to eliminate i from constraints for p_{2}, we get $0 \leq p_{1}<n$, and $p_{1} \leq p_{2}<n$,

For loop2, S3 is dependent on itself and S1 and S3 are also interdependent.

For S1 to S3 interdependence, the space-partition constraint imposed are:
For all (i) and ($\mathrm{i}^{\prime}, \mathrm{j}$) such that,

$$
\begin{aligned}
& i, i^{\prime}>=0, \quad j^{\prime}>=i^{\prime}, \quad i, i^{\prime}<n, \quad j^{\prime}<n, i+1=j^{\prime} \\
& {[p 1 \text { * [i] + [p5 = [p1`, p2` * [i` + [p5` }} \\
& \text { p3] p6] p3`, p4] j] p6`] } \\
& p 1^{*} \mathrm{i}+\mathrm{p} 5=\mathrm{p} 1^{`}{ }^{*} \mathrm{i}^{`}+\mathrm{p} 2^{*} \mathrm{j}^{`}+\mathrm{p} 5^{`}
\end{aligned}
$$

$$
p 3^{*} i+p 6=p 3^{`} * i+p 4^{*} j^{\prime}+p 6^{`}
$$

or
$\mathrm{p} 1^{*} \mathrm{i}+\mathrm{p} 5=\mathrm{p} 1^{`} * \mathrm{i}^{\prime}+\mathrm{p} 2^{*}(\mathrm{i}+1)+\mathrm{p} 5^{`}$
$p 3^{*} i+p 6=p 3^{*} i^{`}+p 4^{*}(i+1)+p 6^{`}$
or
$\mathrm{i}^{*}\left(\mathrm{p} 1-\mathrm{p} 2^{`}\right)+\mathrm{p} 5-\mathrm{p} 2^{\prime}-\mathrm{p} 5^{`}=\mathrm{p} 1^{\prime}{ }^{*}{ }^{\prime}$
$i^{*}(p 3-p 4 `)+p 6-p 6^{`}-p 4^{`}=p 3^{`}{ }^{*}{ }^{`}$
or
$\mathrm{p} 1=\mathrm{p} 2^{`}, \mathrm{p} 3=\mathrm{p} 4^{`}, \mathrm{p} 5=\mathrm{p} 2^{`}+\mathrm{p} 5^{`}, \mathrm{p} 6=\mathrm{p} 6^{`}+\mathrm{p} 4^{`}, \mathrm{p} 1^{`}=0, \mathrm{p} 3^{`}=0$
The simplest solution for the above constraints are:
$\mathrm{p} 1=\mathrm{p} 2^{`}=1, \mathrm{p} 3=\mathrm{p} 4^{`}=1, \mathrm{p} 5=0, \mathrm{p} 5^{`}=-1, \mathrm{p} 6=0, \mathrm{p} 6^{`}=-1, \mathrm{p} 1^{`}=0, \mathrm{p} 3^{`}=0$
For S2,

For S3,

$$
\begin{gathered}
{\left[p_{1}=\left[\begin{array}{cc}
{[0,1} \\
\left.p_{2}\right]
\end{array} \quad * \begin{array}{c}
{[i} \\
0,1]
\end{array} \begin{array}{c}
j \\
j]
\end{array}\right]-1\right]}
\end{gathered}=\left[\begin{array}{c}
{[j-1} \\
j-1
\end{array}\right]
$$

The processor space index variables for $S 1, p_{1}=p_{2}=i$ will have range $0 \leq \mathrm{p}_{1}, \mathrm{p}_{2}<\mathrm{n}$

The processor space index variables for $S 3, p_{1}=p_{2}=j-1$ will have range $\mathrm{i}-1 \leq \mathrm{p}_{1}, \mathrm{p}_{2}<\mathrm{n}-1$

Applying Fourier-motzkin to eliminate i from constraints for p_{1}, p_{2}, we get $-1 \leq p_{1}, p_{2}<n-1$

The generated code is:

Loop1:

```
for ( \(\mathrm{p}_{1}=0 ; \mathrm{p}_{1}<\mathrm{n} ; \mathrm{p}_{1}++\) ) \{
    for ( \(\mathrm{p}_{2}=\mathrm{p}_{1} ; \mathrm{p}_{2}<\mathrm{n} ; \mathrm{p}_{2}++\) ) \(\{\)
        for (i=0; i<n;i++) \{
            for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) ) \{
                    if( \(\mathrm{p} 1==\mathrm{i}\) and \(\mathrm{p} 2==\mathrm{j}\) )
                            \(C[i, j]=C[i, j]+D\left[0, i+1,2^{*} j\right] ; / / S 2\)
```

\} \} \} \}

barrier();

Loop2:

```
for ( \(p_{1}=-1 ; p_{1}<n ; p_{1}++\) ) \{
    for ( \(p_{2}=-1 ; p_{2}<n ; p_{2}++\) ) \(\{\)
            for (i=0; i<n;i++) \{
            if \(\left(p_{1}==i\right.\) and \(\left.p_{1}==p_{2}\right)\)
                        \(A[i+1]=A[i+1]\) * \(B[i+1] ; / / S 1\)
            for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) ) \{
                    if \(\left(p_{1}==j-1\right.\) and \(\left.p_{1}==p_{2}\right)\)
                        \(\mathrm{A}[\mathrm{j}]=\mathrm{A}[\mathrm{j}]\) * \(\mathrm{C}[\mathrm{i}, \mathrm{j}] ; / / \mathrm{S} 3\)
            \}
        \}
\}
```

Fourier-Motzkin for S1

$$
\begin{aligned}
& p_{1} \leq i \leq p_{1}, \quad 0 \leq i<n, \quad-1 \leq p_{1}<n, \quad p_{1} \leq p_{2} \leq p_{1} 1 \leq p_{2}<n \\
& \Rightarrow 0 \leq p_{1}<n, p_{2}=p_{1}
\end{aligned}
$$

Fourier-Motzkin for S3

$$
\begin{aligned}
& 0 \leq i<n, p_{1}+1 \leq j \leq p_{1}+1, \quad i \leq j<n, \quad-1 \leq p_{1}<n, \quad p_{1} \leq p_{2} \leq p_{1} 1 \leq p_{2}<n \\
& =>-1 \leq p_{1}<n-1, p_{2}=p_{1}
\end{aligned}
$$

Loop1:

```
for ( \(\mathrm{p}_{1}=0 ; \mathrm{p}_{1}<\mathrm{n} ; \mathrm{p}_{1}++\) ) \{
    for ( \(\mathrm{p}_{2}=\mathrm{p}_{1} ; \mathrm{p}_{2}<\mathrm{n} ; \mathrm{p}_{2}++\) ) \(\{\)
        for (i=0;i<n;i++) \{
            for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) ) \{
                    if( \(\mathrm{p} 1==\mathrm{i}\) and \(\mathrm{p} 2==\mathrm{j}\) )
                            \(C\left[p_{1}, p_{2}\right]=C\left[p_{1}, p_{2}\right]+D\left[0, p_{1}+1,2^{*} p_{2}\right] ; / / S 2\)
```

\} \} \} \}

barrier();

Loop2: Case analysis

$$
p_{1}=-1
$$

$$
\text { for }(i=0 ; i<n ; i++)\{
$$

$$
\text { for }(j=i ; j<n ; j++)\{
$$

$$
i f\left(p_{1}==j-1\right)
$$

$$
A[j]=A[j] * C[i, j] ; / / S 3
$$

 \}
 \}
for $\left(\mathrm{p}_{1}=0 ; \mathrm{p}_{1}<\mathrm{n}-1 ; \mathrm{p}_{1}++\right)\{$
for $(i=0 ; i<n ; i++)\{$
if $\left(p_{1}=-i\right)$
$A[i+1]=A[i+1]$ * $B[i+1] ; \quad / / S 1$
for ($\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) $\{$
if $\left(p_{1}==j-1\right)$
$A[j]=A[j] * C[i, j] ; / / S 3$
\}
\}
$\mathrm{p}_{1}=\mathrm{n}-1$
for (i=0;i<n;i++) \{
if $\left(p_{1}==i\right)$
$A[i+1]=A[i+1] * B[i+1] ; \quad / / S 1$
\}

Fourier Motzkin

For S3 in case 1:

```
i\leqj\leqn-1,\quad po+1\leqj\leq p +1 =>
i\leq p +1, p +1 \leqn-1,-1\leqp < \leq-1 =>
i\leq0,1\leqn,, 0\leqi<n => i=0,n>0
// p
if(n > 0) A[0] = A[0] * C[0, 0 ]; //S3
```

For S1 in case 2:
$0 \leq i \leq n-1, \quad p_{1} \leq i \leq p_{1}=>$
$0 \leq p_{1}, p_{1} \leq n-1,0 \leq p_{1} \leq n-2=>$
$0 \leq n-1,0 \leq n-2=>n>1$

For S3 in case 2:

$$
\begin{aligned}
& i \leq j \leq n-1, \quad p_{1}+1 \leq j \leq p_{1}+1 \quad \text { => } \\
& i \leq p_{1}+1, \quad 0 \leq i \leq n-1=> \\
& 0 \leq i \leq \min \left(n-1, p_{1}+1\right)=>
\end{aligned}
$$

For S1 in case 3:

```
0\leqi\leqn-1, p < \leqi\leq p =>
0\leq p , p p <n-1,n-1\leqp p <n-1 =>
0\leqn-1 => n>1
```


Loop2:

$$
\begin{aligned}
& / / p_{1}=-1 ; \\
& \text { if }(n>0) A[0]=A[0] * C[0,0] ; / / S 3
\end{aligned}
$$

```
for (p
    A[p, +1] = A[p, +1] * B[p, +1]; //S1
    for (i=0; i < min(n-1, p + 1); i++) {
        A[p
    }
}
```

$/ / p_{1}=n-1$
$A[n]=A[n] * B[n] ; / / S 1$

