

COL729 Major Exam Solutions
Compiler Optimization

Sem II, 2018-19
Answer all 5 questions Max. Marks: 50

1. Provide one example of a program and a data-flow analysis formulation where a
region-based analysis would yield better solutions than data-flow analysis.

a. Specify the data-flow analysis through the set of values, the partial-order
operator, and the transfer functions

b. Specify the composition, meet, and closure operators for the transfer
functions for the region-based analysis

c. Show an example, where the above-formulated region-based analysis would
provide a more precise solution than the above-formulated data-flow analysis.

[10]

Constant-propagation

Data flow analysis

Domain : map (C) from program variable to a constant value
Bottom : NAC (not a constant)
Top : UI (uninitialized or not known)
Direction : Forward
Transfer function : For a statement (S), variable (x) and input map (in),
TF(S,in)(x) = identity, If S in not an assignment to x
 else if S is an assignment to x, substitute the values present in
 input map (in) for each operand variable used by statement S,

● if any operand value is NAC => TF(S,in)(x) = NAC
● If any operand is UI => TF(S,in)(x) = UI
● else TF(S,in)(x) = value after substitution

Meet : If all predecessor send the variable to same constant C, then C else NAC

Region based analysis

Transfer function at exit of subregion S of a region R, fR,OUT[s] =
⋀(Compose the transfer function for predecessor basic blocks Bi and S along all
possible paths from entry of R to S)

Meet : (f1 ∧F f2)(v) = f1(v) ∧ f2(v)

Composition: (f1 o f2)(v) = f1(f2(v))

BB1->BB2
BB2->BB3
BB1->BB3

BB1:
x = 2;
y = 3;

BB2:
x = 3;
y = 2;

BB3:
z = x+y

● Using dataflow analysis at the OUT of BB3 will give z= NAC
● Using above described region based analysis at the OUT of BB3 will give z = 5

2. Consider the following loop nest:

Express the iteration space and the data space of the loop-nest above through the
four-tuples <F,f,B,b> to represent the data-spaces and the iteration space. How many
matrices do you need to specify? What does each of them represent. What are the
dimensions and the values of these matrices? [5]

Iteration space:
B,b for each loop nest specifying the lower and upper bound for iteration variable

B = [1 0 0 0 0 0 0
 -1 0 0 0 0 0 1

 0 1 0 0 0 0 0
 0 -1 0 0 0 0 1
 0 0 1 0 0 0 0
 0 0 -1 0 0 0 1
-B 0 0 1 0 0 0
 B 0 0 -1 0 0 0
 0 -B 0 0 1 0 0
 0 B 0 0 -1 0 0
 0 0 -B 0 0 1 0
 0 0 B 0 0 -1 0]

i = [ii`

jj`
kk`
i
j
k
n/B]

b = [0
-1
 0
-1
 0
-1
 0
B-1
 0
B-1
 0
B-1]

Data space:
F,f for each static access specifying the affine function of loop index variables that produce
the array index for all dimensions

Z[i , j]

F = [0 0 0 1 0 0 0

0 0 0 0 1 0 0]

i = [ii`
jj`
kk`
i
j
k
n/B]

f = [0

0]

X[i , k]

F = [0 0 0 1 0 0 0

0 0 0 0 0 1 0]

i = [ii`
jj`
kk`
i
j
k
n/B]

f = [0

0]

Y[k , j]

F = [0 0 0 0 0 1 0

0 0 0 0 1 0 0]

i = [ii`
jj`
kk`
i
j
k
n/B]

f = [0

0]

3. Consider the following loop-nest

for (i = 0; i <= 1000; i++)
 for (j = 0; j <= min(750,i); j++)
 X[j+1] = (1 / 3) * (X[j] + X[j+1] + X[j+2]);

Use Fourier-Motzkin elimination to transform this loop with outer-axis k=i+j. Show the
working of the algorithm succinctly, to show how you obtain the result. [8]

Iteration space:
i ≥ 0, i ≤ 1000, j ≥ 0, j ≤ 750, j ≤ i

Introduce k = i+j

Let’s eliminate variable j by using j = k-i

New iteration space constraints:
i ≥ 0, i ≤ 1000, k-i ≥ 0, k-i ≤ 750, k-i ≤ i
or
i ≥ 0, i ≤ 1000, k ≥ i, k ≤ i+750, k ≤ 2*i
or
i ≥ 0, i ≤ 1000, i≤ k, i ≥ k-750, 2*i ≥ k
 (1) (2) (3) (4) (5)

k should be outer-axis, so project away i from constraints:

Using 1 and 2, 0 ≤ 1000
Using 1 and 3, 0 ≤ k
Using 4 and 2, k-750 ≤ 1000 => k ≤ 1750
Using 4 and 3, k-750 ≤ k => -750 ≤ 0
Using 5 and 2, k ≤ 2*1000 => k ≤ 2000
Using 5 and 3, k ≤ 2*k

Constraints for k:
k ≥ 0, k ≤ 1750

Constraints for i:
i ≥ 0, i ≤ 1000, i ≤ k, i ≥ k-750, i ≥ ⌈k/2⌉

i ≥ max(⌈k/2⌉, k-750), i ≥ 0 is redundant as ⌈k/2⌉ ≥ 0 for k ≥ 0
i ≤ min(k,1000)

for (k = 0; k <= 1750; k++)
 for (i = max(⌈k/2⌉, k-750); i <= min(k,1000); i++)
 X[k-i+1] = (1 / 3) * (X[k-i] + X[k-i+1] + X[k-i+2]);

Similarly can be done for eliminating i instead of j

4. Suppose there are two array accesses

A[2*i, j, i + j] and A[2*i + 4, j - 2, i + j]

In a 3-deep loop nest, with indices i, j, and k from the outer to the inner loop. What are all the
types of temporal reuse (self-temporal and group-temporal) in this loop nest? Ignore spatial
reuse.
[10]

Self-temporal reuse

For A[2*i, j, i+j],

F = [2 0 0

0 1 0
1 1 0]

f = [0
0
0]

For A[2*i + 4, j-2, i+j],

F = [2 0 0

0 1 0
1 1 0]

f = [4
-2
 0]

In both the above cases,
Rank of F, r= 2 and loop nest depth d = 3
The difference between iteration variables (i,j,k), (i`,j`,k`) which access the same array index
is given by nullspace of F :
2(i-i`) = 0, (j-j`) = 0; i.e. i = i`, j = j`
O(n) self temporal reuse, i.e. an element is accessed O(n) times where n is the num of
iterations in loop with iteration variable k

Group-temporal reuse

The access have group temporal reuse, if there exists (i,j,k) and (i`,j`,k`), such that
F * ([i,j,k]T - [i`,j`,k`]T) = f2-f1

 [2 0 0 [i-i` [4
 0 1 0 * j-j` = -2
 1 1 0] k-k`] 0]

or

i-i` = 2
j-j` = -2
k-k` can be arbitrary from 0 to n, where n is the number of iterations in loop with iteration
variable k

5. Consider the following program:

for (i = 0; i < n; i++) {
 A[i + 1] = A[i + 1] * B[i + 1]; //S1
 for (j = i; j < n; j++) {
 C[i,j] = C[i,j] + D[0,i+1,2*j]; //S2
 A[j] = A[j] * C[i,j]; //S3
 }
}

Apply the algorithm to find parallelism with a constant number of synchronizations to this
loop nest.

1. Show the queries you make to construct the program dependence graph. How many
ILP queries did you have to make? [4]

2. After inserting a constant number of synchronizations, parallelize each separate loop
nest (with no synchronization) if possible.

a. What are the space-partition constraints? [3]
b. Show the steps involved in solving the space-partition constraints. [3]
c. What is the solution to your space-partition constraints [2]
d. What is the generated code before eliminating empty iterations and tests from

the inner loop (i.e., before applying Fourier Motzkin and before doing
case-analysis)? [1]

e. What is the generated code after applying Fourier Motzkin at each level of the
iteration. Show the case analysis and the final generated code at each step.
[4]

1. ILP Queries (Total 9 queries, one for each pair of statements)
Edge between S1,S1: For both array A
∃ i,i`, s.t. 0 ≤ i < n, 0 ≤ i` < n, i` > i, i` + 1 = i + 1

Edge between S2,S2: For both array C
∃ i,i`,j,j` s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j` < n,
(i`,j`) > (i,j), i` = i , j` = j

Edge between S3,S3: For both array A
∃ i,i`,j,j` s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j` < n,
(i`,j`) > (i, j) j` = j

Edge between S1,S2 and S2,S1:
No dependency as different arrays are accessed

Edge between S1,S3:
∃ i,i`,j, s.t. 0 ≤ i < n, 0 ≤ i` < n, i` ≤ j < n, i < i`, i + 1 = j

Edge between S3,S1:
∃ i,i`,j, s.t. 0 ≤ i < n, 0 ≤ i` < n, i` ≤ j < n, i` < i, i + 1 = j

Edge between S2,S3:
∃ i,i`,j,j` s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j < n, ((i < i`) or (i=i` and j ≤ j`))
i = i` and j = j`

Edge between S3,S2:
∃ i,i`,j,j` s.t. 0 ≤ i < n, 0 ≤ i` < n, i ≤ j < n, i` ≤ j < n, ((i` < i) or (i=i` and j` < j))
i = i` and j = j`

PDG:
S1 -> S3
S3 -> S1
S3 -> S3
S2 -> S3

2. Constant number of synchronizations:
We will have a separate loop nest for each SCC in the PDG.
In this case, S1,S3 form 1 SCC and S2 is another SCC. Further, S3 depends on S2,
so S2 loop will be executed first and S3 will be executed later after synchronization

Loop1:
for (i = 0; i < n; i++) {
 for (j = i; j < n; j++) {
 C[i,j] = C[i,j] + D[0,i+1,2*j]; //S2
 }
}
barrier();
Loop2:
for (i = 0; i < n; i++) {
 A[i + 1] = A[i + 1] * B[i + 1]; //S1
 for (j = i; j < n; j++) {
 A[j] = A[j] * C[i,j]; //S3
 }
}

Space partition constraints

For loop 1, S2 is not dependent on itself, so we can run all iterations in parallel.
Assuming a 2-D processor space,
The space partition constraints are:
For all (i,j) and (i`,j`) such that,
i,i` >= 0, j >= i, j` >= i`, i,i` < n, j,j` < n, i = i`, j=j`

[p1, p2 * [i + [p5 = [p1`, p2` * [i` + [p5`
 p3, p4] j] p6] p3`, p4`] j`] p6`]

Substituting i = i` and j=j`, we get,
(p1-p1`) * i + (p2-p2`) * j + (p5-p5`) = 0
(p3-p3`) * i + (p4-p4`) * j + (p6-p6`) = 0

The simplest solution to this is
[1 0 * [p1 + [0 = [i
 0 1] p2] 0] j]

or
p1 = i and p2 = j

The processor space index variables p1 = i and p2 = j will have range
0 ≤ p1 < n, and i ≤ p2 < n,

Applying Fourier-motzkin to eliminate i from constraints for p2, we get
0 ≤ p1 < n, and p1 ≤ p2 < n,

For loop2, S3 is dependent on itself and S1 and S3 are also interdependent.

For S1 to S3 interdependence, the space-partition constraint imposed are:
For all (i) and (i`,j`) such that,

i,i` >= 0, j` >= i`, i,i` < n, j` < n, i+1 = j`

[p1 * [i] + [p5 = [p1`, p2` * [i` + [p5`
 p3] p6] p3`, p4`] j`] p6`]

p1 * i + p5 = p1` * i` + p2`*j` + p5`

p3 * i + p6 = p3` * i` + p4`*j` + p6`

or

p1 * i + p5 = p1` * i` + p2`*(i+1) + p5`
p3 * i + p6 = p3` * i` + p4`*(i+1) + p6`

or

i * (p1-p2`) + p5 -p2`-p5` = p1` * i`
i * (p3-p4`) + p6 -p6`-p4` = p3` * i`

or

p1 = p2`, p3 = p4`, p5 = p2` + p5`, p6 = p6` + p4`, p1` = 0, p3` = 0

The simplest solution for the above constraints are:

p1 = p2` = 1, p3 = p4` = 1, p5 = 0, p5` = -1, p6 = 0, p6` = -1, p1` = 0, p3` = 0

For S2,
[p1 = [1 * [i] + [0 = [i
 p2] 1] 0] i]

For S3,
 [p1 = [0, 1 * [i` + [-1 = [j`-1
 p2] 0, 1] j`] -1] j` -1]

The processor space index variables for S1, p1 = p2 = i will have range
0 ≤ p1,p2 < n

The processor space index variables for S3, p1 = p2 = j-1 will have range
i-1 ≤ p1,p2 < n-1

Applying Fourier-motzkin to eliminate i from constraints for p1,p2, we get
-1 ≤ p1,p2 < n-1

The generated code is:

Loop1:
for (p1 = 0; p1 < n; p1++) {
 for (p2 = p1; p2 < n; p2++) {
 for (i = 0; i < n; i++) {
 for (j = i; j < n; j++) {
 if(p1 == i and p2 ==j)
 C[i,j] = C[i,j] + D[0,i+1,2*j]; //S2
} } } }

barrier();
Loop2:
for (p1 = -1; p1 < n; p1++) {
 for (p2 = -1; p2 < n; p2++) {
 for (i = 0; i < n; i++) {
 if(p1 == i and p1 == p2)
 A[i + 1] = A[i + 1] * B[i + 1]; //S1
 for (j = i; j < n; j++) {
 if(p1 == j-1 and p1 == p2)
 A[j] = A[j] * C[i,j]; //S3
 }
 }
}

Fourier-Motzkin for S1
 p1 ≤ i ≤ p1 , 0 ≤ i < n, -1 ≤ p1 < n, p1 ≤ p2 ≤ p 1 1 ≤ p2 < n

 => 0 ≤ p1 < n, p 2 = p1

Fourier-Motzkin for S3
 0 ≤ i < n, p 1 +1 ≤ j ≤ p1+1 , i ≤ j < n, -1 ≤ p1 < n, p1 ≤ p2 ≤ p 1 1 ≤ p2 < n

 => -1 ≤ p1 < n-1, p 2 = p1

Loop1:
for (p1 = 0; p1 < n; p1++) {
 for (p2 = p1; p2 < n; p2++) {
 for (i = 0; i < n; i++) {
 for (j = i; j < n; j++) {
 if(p1 == i and p2 ==j)
 C[p1,p2] = C[p1,p2] + D[0, p1+1, 2*p2]; //S2
} } } }

barrier();

Loop2: Case analysis
p1 = -1;
for (i = 0; i < n; i++) {
 for (j = i; j < n; j++) {
 if(p1 == j-1)
 A[j] = A[j] * C[i, j]; //S3
 }
}

for (p1 = 0; p1 < n-1; p1++) {
 for (i = 0; i < n; i++) {
 if(p1 == i)
 A[i + 1] = A[i + 1] * B[i + 1]; //S1
 for (j = i; j < n; j++) {
 if(p1 == j-1)
 A[j] = A[j] * C[i,j]; //S3
 }
}

p1 = n-1
for (i = 0; i < n; i++) {
 if(p1 == i)
 A[i + 1] = A[i + 1] * B[i + 1]; //S1
}

Fourier Motzkin
For S3 in case 1:
i ≤ j ≤ n-1, p1+1 ≤ j ≤ p1+1 =>
i ≤ p1+1 , p1+1 ≤ n-1 , -1 ≤ p 1 ≤ -1 =>
i ≤ 0, 1 ≤ n, , 0 ≤ i < n => i =0, n > 0

// p1 = -1;
if(n > 0) A[0] = A[0] * C[0, 0]; //S3

For S1 in case 2:
0 ≤ i ≤ n-1, p1 ≤ i ≤ p1 =>
0 ≤ p1 , p1 ≤ n-1 , 0 ≤ p 1 ≤ n-2 =>
0 ≤ n-1 , 0 ≤ n-2 => n > 1

For S3 in case 2:
i ≤ j ≤ n-1, p1+1 ≤ j ≤ p1+1 =>
i ≤ p1+1 , 0 ≤ i ≤ n-1 =>
0 ≤ i ≤ min(n-1, p 1+1) =>

For S1 in case 3:
0 ≤ i ≤ n-1, p1 ≤ i ≤ p1 =>
0 ≤ p1 , p1 ≤ n-1 , n-1 ≤ p 1 ≤ n-1 =>
0 ≤ n-1 => n > 1

Loop2:
// p1 = -1;
if(n > 0) A[0] = A[0] * C[0, 0]; //S3

for (p1 = 0; p1 < n-1; p1++) {
 A[p1 + 1] = A[p1 + 1] * B[p1 + 1]; //S1
 for (i = 0; i ≤ min(n-1, p1 + 1); i++) {
 A[p1 + 1] = A[p1 + 1] * C[i,p1 + 1]; //S3
 }
}

// p1 = n-1
A[n] = A[n] * B[n]; //S1

