

COL 729: Lab 3 Report

Part A: Compilation of gemm program using gcc, icc and clang(with and without Polly)
and Observing respective runtimes

Compilation Option Execution Time(in Seconds)

Clang -O3 377.53

gcc -O3 381.33

Icc -O3 18.45

Clang -O3 with Polly 12.17

Part B: Analysis of the Assembly Codes generated in above four cases

Analysis of x86 assembly generated by gcc -O3

gcc - O3 does not explores the possibility of loop vectorization, loop unrolling, loop tiling etc.
which are considered to be the most significant and popular loop optimization techniques. The
assembly code generated by gcc -O3 doesn’t add anything tricky to the original straightforward
implementation of the matrix multiplication routine of gemm. A high level idea of what gcc -O3
does can be inferred by looking into the assembly code generated and that is as follows:

For i = 0 upto 4000

For j = 0 upto 4000
C[i , j] = C[i , j] * beta
For k = 0 upto 4000

C[i , j] = C[i , j] + alpha * A[i , k] * B[k , j]
End for

End for
End for

Analysis of x86 assembly generated by clang -O3

Clang -O3 also doesn’t explore the possibility of sophisticated loop optimization techniques like
loop vectorization and loop tiling but introduces loop unrolling which gcc -O3 could not. The
runtime comparison between gcc -O3 and clang -O3 possibly reflect this fact. The high level
overview of what clang -O3 does to gemm program is as follows:

For i = 0 upto 4000

For j = 0 upto 4000
C[i , j] = C[i , j] * beta
For k = 0 ; k < 4000 ; k = k +2

C[i , j] = C[i , j] + alpha * A[i , k] * B[k , j]
C[i , j] = C[i , j] + alpha * A[i , k + 1] * B[k + 1 , j]

End for
End for

End for

What clang -O3 does can not be claimed to be enough aggressive from a performance(
execution time) optimization perspective. It unrolls the inner loop only two times without taking
any advantage of the parallelization opportunity offered by the hardware by means of
vectorization.

Analysis of x86 assembly generated by icc -O3

Intel compiler, when applied with the highest optimization level, applies loop tiling or loop
blocking in order to reduce the number of cache misses. In this particular kind of program where
a lot of memory accesses take place, the uncontrolled cache misses can severely affect the
runtime. This can be validated from the runtime comparison chart presented above in the first
section. Intel compiler applies loop splitting also to split the two statements. It vectorizes the first
statement with a vector width of 2(possibly). The high level overview of how intel compiler
optimizes the gemm program can be derived from the following description:

For i = 0 upto 4000

For j = 0 upto 4000 in a step of 8(j = j + 8)
vector< C[i , j] , C[i , j + 1] > =
vector_multiply(vector< C[i , j] , C[i , j + 1] >, < beta, beta, beta, beta>
vector< C[i , j + 2] , C[i , j + 3] > =
vector_multiply(vector< C[i , j + 2] , C[i , j + 3] >, < beta, beta, beta, beta>
vector< C[i , j + 4] , C[i , j + 1 + 5] > =

vector_multiply(vector< C[i , j + 4] , C[i , j + 5] >, < beta, beta, beta, beta>
vector< C[i , j + 6] , C[i , j + 7] > =
vector_multiply(vector< C[i , j + 6] , C[i , j + 7] >, < beta, beta, beta, beta>

End for
End for
For ii = 0 ; ii < 4000 ; ii = ii + 128

For jj = 0 ; jj < 4000 ; jj = jj + 128
For kk = 0 ; kk < 4000 ; kk = kk + 128

For tile_i = 0 ; tile_i < min(ii + B, 4000) ; tile_i++
For tile_j = 0 ; tile_j < min(jj + B, 4000) ; tile_j++

For tile_k = 0 ; tile_k < min(kk + B, 4000) ; tile_k++
C[tile_i , tile_j] += alpha * A[tile_i][tile_k]

 * B[tile_k][tile_j]

Analysis of x86 assembly generated by clang -O3 with Polly

When gemm is compiled with clang with the polly, it exhibits the best result among all other
compilation options presented in this report. Polly applies vectorization, unrolling and tiling and
also checks when it can apply them or when the memory layout of matrices are overlapping and
it can not apply some of the techniques. The high level overview of what polly does is as
follows:
(only the kernel-gemm part is described. That is the heart of gemm)

If the memory layouts of the A, B, C matrices are not overlapping, then

For ti = 0 upto 125
For tk = 0 upto 32

For tj = 0 upto 125
ii = ti * 32 + tk
vector< C[ii , tj * 32 + 0], C[ii , tj * 32 + 1]> *= beta
vector< C[ii , tj * 32 + 2], C[ii , tj * 32 + 3]> *= beta
vector< C[ii , tj * 32 + 4], C[ii , tj * 32 + 5]> *= beta
vector< C[ii , tj * 32 + 6], C[ii , tj * 32 + 7]> *= beta
vector< C[ii , tj * 32 + 8], C[ii , tj * 32 + 9]> *= beta
vector< C[ii , tj * 32 + 10], C[ii , tj * 32 + 11]> *= beta
vector< C[ii , tj * 32 + 12], C[ii , tj * 32 + 13]> *= beta
vector< C[ii , tj * 32 + 14], C[ii , tj * 32 + 15]> *= beta
………………………………...
vector< C[ii , tj * 32 + 30], C[ii , tj * 32 + 31]> *= beta

End for
End for

For j tiling is 0 upto 4

For k tiling is 0 upto 10
For i tiling is 0 upto 63

For j = 0 upto 4000 insteps of 4
For i = 0 upto 4000 in steps of 4

For k = 0 upto 4000
vector< C[i , j] , C[i , j + 1] +=
vector< alpha * A[i , k] * B[k , j] ,

Alpha * A[i , k] * B[k , j + 1]> ;

vector< C[i , j + 2] , C[i , j + 3] +=
vector< alpha * A[i , k] * B[k , j + 2] ,

Alpha * A[i , k] * B[k , j + 3]> ;

………………………..
vector< C[i + 3 , j + 2] , C[i + 3 , j + 3] +=
vector< alpha * A[i + 3 , k] * B[k , j + 2] ,

Alpha * A[i + 3 , k] * B[k , j + 3]> ;
End for

End for
End for

End for
End for

End for
Else

For i = 0 upto 4000
For j = 0 upto 4000

C[i , j] = C[i , j] * beta;
For k = 0 upto 4000(insteps of 2)

C[i , j] += alpha * A[i , k] * B[k , j];
C[i , j] += alpha * A[i , k + 1] * B[k + 1 , j];

End for
End for

End for
End if

More efficient implementation than Polly

The code for this has been attached with the submission folder of this Assignment. The
approach which has been followed to construct the efficient implementation is as follows:

First the understanding which is developed after studying and investigating the LLVM bit-code
as well as the x86 assembly code generated by clang -O3 Polly is utilized to create such an
implementation which tries to mimic all the optimizations applied by Polly. As Polly lacks
detailed knowledge about the underlying processor architecture and memory hierarchy, it uses
some hard-coded vectorization width while vectorizing the loops. Intel intrinsic instructions are
used to enforce desired control over vectorization widths. With some incremental changes, the
implementation becomes faster than polly. The average runtime found is : 7.88 Seconds.

A Comparative Study of Run Time Behaviours of the x86 Assemblies

Compilation opt. Cache References Cache Misses Cycles per Inst.

Clang -O3 59,43,25,18,989 11,24,73,04,317 0.40

Clang -O3 with polly 26,47,39,773 5,10,17,630 2.69

gcc -O3 58,95,95,24,223 11,17,12,50,028 0.49

Icc -O3 32,14,31,271 12,66,15,305 2.21

Part C: Key Learnings about the Strengths of Polly Framework

Optimizing a program like gemm is very important because it is a frequently occurring dense
matrix multiplication routine. gcc and clang do not modify the loop structure significantly and
introduces no SIMD instructions. Polly can mitigate these limitations. It can apply Strip Mining to
change the loop structure in a way such that the locality is improved and the trivially vectorizable
loops are exposed. It replaces trivially vectorizable loops with SIMD instructions. This way Polly
achieves what ICC with highest optimization achieves. To minimize the scalar loads needed to
initialize any vector, Polly can employ Code Hoisting, identify invariant loads and improve the
runtime significantly. All these important loop optimizations are automatically applied by Polly.
The only manual component, in this case, is the externally provided schedule. Even in a
low-level program, optimizations can be performed by Polly when provided with only polyhedral

schedule. External optimizers like PLuTo can be used to expose the parallelism and followed by
that Polly can be employed to create OpenMP code that takes advantage of the exposed
parallelism. The optimization process offered by Polly is not bound to any specific high-level
programming language and does not need the input code to obey any special syntax. Polly can
target multi-core systems as well as heterogeneous platforms with several cores and
accelerators.

Part D: Weaknesses of Polly Framework

One limitation of Polly is that, Polly does not model the problem of integer overflow. But, in any
program, the most interesting parts consist of loops with several iteration variables which might
be of different data types with different storage sizes. In order to be correct, Polly takes a
conservative decision. It models them with 64-bit loop counters. Though in the original source
code, a loop-iteration variable is of data type ‘int’, Polly would treat it as a ‘long’ data type which
consumes 64-bit storage length.

While analyzing the bit-code(and x86 assembly code) generated by clang -O3 polly from
gemm.c), it is observed that the polly takes some really conservative and limited decisions
regarding Vectorization width or Tile sizes. For example, it used a vectorization width of two in
case of vectorizing the loop associated with the statement, C[i , j] += alpha*A[i , k] * B[k , j].
But, a vectorization width of four can easily be used in that scenario. It is observed that a
4-width vectorization there would improve the runtime of the gemm program. But, when the
vectorization width is further increased, the runtime starts to increase after a certain width.
Surely, polly did not take the optimal vector width in the gemm program. The reason for this is
that, Polly lacks a proper model of memory hierarchy and normally uses some hard-coded
numbers for vectorization width or tiling size. Polly uses some hard-coded settings which may or
may not match the actual processor settings. Polly requires the modelling of underlying
processor architecture and memory hierarchy in more detailed manner. Polly cannot model
‘memmove’, ‘memset’ instructions.

Polly also cannot modify the structure of any basic block in any source program. Polly treats a
basic block as a statement in its polyhedral representation. If more finer granularity is expected,
decomposing basic blocks into its constituent statements is needed to exploit more aggressive
parallelism. Polly also might not be promising in terms of changing the data layout in order to
enforce good locality.

Vector load/store operations are implemented in terms of multiple scalar loads/stores. Polly
cannot optimize for complex load/store which is neither stride-one, or stride-zero.

Polly also induces some limitations in vectorization of loops in the source programs. It can only
vectorize those loops which have constant, non-parametric number of loop iterations and
doesn’t contain conditional control flow or any further loops. Preparing optimization passes are
necessary to expose these kinds of trivially vectorizable loops to Polly. Sometimes,
optimizations might take much more conservative decisions and loop vectorization opportunity
can be neglected.
When the memory access function is not affine, Polly can still capture the memory access but
needs to take a conservative assumption. LLVM provides some alias analysis which can identify
any aliasing as must-alias, may-alias or no-alias. In case of may-alias, LLVM is not certain and
an SCoP(Static Control Parts) can be discarded by Polly. A more rigorous alias analysis might
improve the accuracy.

