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1 Running times

Table 1 shows the running times of the gemm.c benchmark of the polybench benchmark suite with
different compilers. All runs were performed on an Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz
machine with 6 cores with hyperthreading with the following compilation flags: -DPOLYBENCH TIME

-DEXTRALARGE DATASET -DDATA TYPE IS INT.

Remark: The compilation flag -DDATA TYPE IS INT did not seem to have any effect on the data
type of the matrices as the benchmark always picked up double as the matrices’ data type. We
therefore stick to performing all experiments on matrices of doubles for easier comparisons.

Compiler Runtime (s)

gcc -O3 375.39
clang -O3 (without polly) 374.89

icc -O3 18.32
clang -O3 -mllvm -polly 11.84

Table 1: Runtimes of gemm.c on different compilers
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2 Analysis

2.1 gcc -O3

Listing 1 shows pseudo code for the execution logic in case of gcc -O3. It is clear that in this case
the O3 logic is exactly similar to the source code, with no significant optimizations performed to
improve the data locality or parallelism, therefore resulting in poor overall performance.

for (i=0; i <4000; i++) {

for (j=0; j <4000; j++) {

C[i][j] *= beta;

for (k=0; k <4000; k++) {

C[i][j] += alpha * A[i][k].B[k][j];

}

}

}

Listing 1: Pseudo code for gcc -O3 gemm.c

2.2 clang -O3 (without polly)

Listing 2 shows pseudo code for the execution logic in case of clang -O3 (without polly). In this
case, the only attempt at loop optimization is unrolling the innermost loop twice to save some jump
instructions, but that is not enough and the performance in this case is almost as bad as gcc -O3.

for (i=0; i <4000; i++) {

for (j=0; j <4000; j++) {

C[i][j] *= beta;

for (k=0; k <4000; k=k+2) {

C[i][j] += alpha * A[i][k].B[k][j];

C[i][j] += alpha * A[i][k+1].B[k+1][j];

}

}

}

Listing 2: Pseudo code for clang -O3 gemm.c (without polly)

2.3 icc -O3

Listing 3 shows pseudo code for the case of icc -O3. ICC performs many consequential optimiza-
tions:

First, it performs loop fission to calculate C[i][j] *= beta in a separate loop nest. This results in
better data locality for both the loop nests.

Second, it realizes that since all the matrices A, B and C are stored in row-major form, any ordering
of the loops would result in poor cache utilization for one of the matrices and would result in many
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cache misses in the innermost loop. Therefore it performs its accesses in a tiling fashion to allow
better cache locality along all three loop variables i, j and k.

Third, the loop in j is ordered to be the innermost so that it can enjoy great cache localization due
to row major formats of both C[i][j] and B[k][j] (column-wise access of A[i][k] is moved to
the outer loop).

Fourth, since the innermost loop is independent in j, it is vectorized using Intel’s SSE instruction set
extension using width 2 vectors, thus doubling the performance. In Sec. 2.5, we will see how we can
exploit the hardware’s capability to run even wider vectors, thus resulting in further performance
improvement.

Finally, the innermost loop is unrolled a few times to save some condition checks and jump instruc-
tions.

for (i=0; i <4000; i++) {

for (j=0; j <4000; j=j+8) {

<C[i][j], C[i][j+1]> *= <beta , beta >;

...

<C[i][j+6], C[i][j+7]> *= <beta , beta >;

}

}

for (bi=0; bi <32; bi++) {

for (bj=0; bj <32; bj++) {

for (bk=0; bk <32; bk++) {

for (tk=0; tk <128; tk++) {

k = 128*bk + tk;

for (ti=0; ti <128; ti++) {

i = 128*bi + ti;

a = alpha*A[i][k];

for (tj=0; tj <128; tj++) {

j = 128*bj + tj;

<C[i][j], C[i][j+1]> += a*<B[k][j], B[k][j+1]>;

...

<C[i][j+6], C[i][j+7]> += a*<B[k][j+6], B[k][j+7]>;

}

}

}

}

}

}

Listing 3: Pseudo code for icc -O3 gemm.c

2.4 clang -O3 -mllvm -polly

Listing 4 shows pseudo code for the case of clang -O3 -mllvm -polly. Like ICC, Polly performs
many loop transformations including loop tiling, reordering, fission and vectorization to achieve the
best performance.
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Polly first performs an aliasing analysis on the innermost loop statement to determine if above
loop transformations are even applicable. It employs a memory bounds check to see if the range of
memory locations accessed by matrix C overlaps with that accessed by matrices A or B, and switches
to an unoptimized, non-vectorized version if this check fails at runtime. The pseudo code for this
unoptimized version is the same as that obtained by clang -O3 without polly (i.e. Listing 2).

If the memory bounds check passes, the code generated by Polly is similar to the one generated by
icc in that it also relies on tiling for better data locality and cache utilization. The interesting thing
in Polly is how it determines the sizes of the tiles to allow maximum cache utilization.

for (bi=0; bi <125; bi++) {

for (ti=0; ti <32; ti++) {

i = 32*bi + ti;

for (bj=0; bj <125; bj++) {

j = 32*bj;

<C[i,j], C[i,j+1]> *= <beta , beta >;

...

<C[i,j+30], C[i,j+31]> *= <beta , beta >;

}

}

}

for (bj=0; bj <4; bj++) {

for (bk=0; bk <10; bk++) {

for (bi=0; bi <63; bi++) {

for (tj=0; tj <1000; tj=tj+2) {

j = 1000* bj + tj;

if (j >3997) break;

for (ti=0; ti <64; ti=ti+4) {

i = 64*bi + ti;

if (i >3996) break;

for (tk=0; tk <400; tk++) {

k = 400*bk + tk;

if (k >3999) break;

<C[i,j], C[i,j+1]> += A[i][k] * <B[k,j], B[k,j+1]>;

...

<C[i+3,j], C[i+3,j+1]> += A[i+3,k] * <B[k,j], B[k,j+1]>;

}

}

}

}

}

}

Listing 4: Pseudo code for clang -O3 -mllvm -polly gemm.c

In the sequel, we try to analyze the rough number of cache misses in the above program. For
simplicity, we focus our attention to the cache misses in one block only, i.e. within the innermost 3
loops. Let us assume that the cache size is C bytes and the cache line size is c bytes. Let’s denote
the sizes of the inner loops by |ti|, |tj | and |tk| and the vector width by w (in the above program,
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|ti| = 64, |tj | = 1000, |tk| = 400 and w = 2). Finally, recall that all the matrices are made up of
doubles and are stored in row-major format.

Consider matrix A. Its innermost loop access pattern is such that the number of cache misses in it is

4. |tk|×8c . For the ti loop, the total number of cache misses is |ti|. |tk|×8c . If all entries of A accessed
within the tj loop can live within the cache, then the total number of cache misses in the tj loop
is the same as above (otherwise it is a multiple of |tj |). That is, if |ti| × |tk| × 8 < C, then the total

number of cache misses due to A is |ti|. |tk|×8c per block.

Now consider matrix B. B’s innermost loop access pattern is such that the number of cache misses
in it is |tk|+ |tk|.wc (w

c represents integer division). If all the entries of B accessed within the ti loop
can live within the cache, then the number of cache misses in the ti loop is the same as above, i.e.
if |tk| ×w× 8 < C then the number of cache misses in the ti loop is |tk|+ |tk|.wc , and therefore the

total number of cache misses in the tj loop (i.e. one block) is
|tj |
w .(|tk|+ |tk|.wc ).

Consider matrix C. We can analyze this assuming that the memory operations for C are moved outside
the innermost loop. The total number of cache misses in the ti loop are |ti|+|ti|wc . The total number

of cache misses per block, i.e. total number of cache misses in the tj loop are
|tj |
w (|ti|+ |ti|wc ).

Notice therefore that the tile sizes of loops (i.e. |ti|, |tj | and |tk|) and vector width w are governed
by various constraints that ensure that a) entries within a tile fit within the cache, and b) the
total number of cache misses is minimum. Note, however, that the vector width w doesn’t need
to be upper bounded to 2 for better cache utilization. This is something which we exploit in our
hand-optimized version (Sec. 2.5).

2.5 Hand-optimized matrix multiplication

A hand-optimized matrix multiplication code has been attached with this submission (filename
gemm-handopt.c). It uses Intel Intrinsics to embed advanced assembly-level vectorization instruc-
tions in C code. It builds upon the polly generated loop tilings and uses the fact that the experimental
machine supports AVX-512 extension, thus presenting opportunity for wider vectorization. We use
the maximum possible vector width (i.e. 8) supported by AVX-512 and that gives us almost 4x
speed-up compared to Polly as expected (see Table 2).

A few other tricks that were used to boost the performance are in order. We used the fused-multiply-
add (FMA) instructions in the innermost loop as they are very well suited for our application. The
store/load from matrix C were moved outside the innermost loop to prevent many memory operations
in the innermost loop.

The performance of this hand-optimized version is shown in Table 2 and a pseudo code (of the
second loop nest only) is shown in Listing 5.

for (bj=0; bj <4; bj++) {

for (bk=0; bk <10; bk++) {

for (bi=0; bi <63; bi++) {

for (tj=0; tj <1000; tj=tj+8) {

j = 1000* bj + tj;

if (j >3992) break;

for (ti=0; ti <64; ti=ti+4) {

i = 64*bi + ti;
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if (i >3996) break;

for (tk=0; tk <400; tk++) {

k = 400*bk + tk;

if (k >3999) break;

<C[i,j]... C[i,j+7]> += A[i,k]*<B[k,j]...B[k,j+7]>;

...

<C[i+3,j]...C[i+3,j+7]> += A[i+3,k]*<B[k,j]...B[k,j+7]>;

}

}

}

}

}

}

Listing 5: Pseudo code for hand-optimized version of matrix multiplication

Compiler/Source Runtime (s)

gcc -O3 gemm.c 375.39
clang -O3 gemm.c (without polly) 374.89

icc -O3 gemm.c 18.32
clang -O3 -mllvm -polly gemm.c 11.84

icc -O3 gemm-handopt.c (hand-optimized) 4.60

Table 2: Runtimes of gemm.c on different compilers

3 Polly - Key Strengths

• Powerful tiling/loop interchange passes: We have seen above that Polly is able to reorder
loops, perform loop fission and loop tiling transforms to exploit the data locality the most.
Moreover, the tile sizes seem to be carefully calculated so as to optimally utilize the cache.
It is also able to insert vectorized instructions wherever possible, although as noted above it
doesn’t utilize the full vector width supported by the hardware.

• Aliasing support: Consider the example shown in Listing 6. Pointer ptr is assigned to either
A or B depending on some non-affine condition that cannot be checked at compile time but
is a tautology nonetheless leading to ptr = A always at runtime. The loop nest is such that
when ptr = A, the i loop could be trivially optimized away since there exists no dependency
on i. However, when ptr = B, a dependency chain in B is formed, which must be preserved
by retaining the loop as it is.

In cases like this, Polly does the right thing even if it can’t determine the exact value of ptr

at compile time. It inserts a memory bounds check which allows it to use the optimized loop
nest in case the memory locations accessed by ptr don’t overlap with that of B at runtime,
and use the vanilla loop nest in case there is some aliasing in the memory locations pointed
by ptr and those pointed by B.

...
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double* ptr = (k+k*k >= k) ? A : B;

for (i=0; i <10000; i++) {

for (j=0; j <10000; j++) {

B[j] = ptr[j] + 5;

}

}

Listing 6: Aliasing in Polly

• Miscellaneous: In addition, there are many benefits from a software engineering point of
view. Polly works on LLVM IR, thus making it useful for a variety of high-level languages, not
just C/C++. Also, its modular design allows it to be used with external optimizers.

4 Polly - Limitations

• Vectorization of loops: As shown in Sec. 2.4, Polly doesn’t always utilize the full vector
width supported by the hardware. This could be exploited to further boost performance as
shown in our hand-optimized version (Sec. 2.5).

In addition, in some programs, a loop is not vectorized because a tautology is not apparent
at compile time. Consider Listing 7 where the condition i+j>=i is not checkable at compile
time, and thus, a loop nest which was trivially vectorizable isn’t vectorized at all.

for (i=0; i<N; i++) {

for (j=0; j<N; j++) {

if (i+j>=i) {

C[i] = 0;

} else {

C[i] = C[i-1] + 1;

}

}

}

Listing 7: Vectorization of loops in Polly

• Basic blocks are indivisible: When performing its loop transformation passes, Polly con-
siders basic blocks as indivisible blocks and thus can lose out on some parallelization/code
motion opportunities if various statements within a basic block are independent. Consider the
example shown in Listing 8 where the accesses to array D create a dependency chain. Since
Polly treats the entire basic block as one entity, it loses the opportunity to parallelize the 4
sequential accesses of C even though all of them are independent in themselves and with D.

for (i=0; i<N; i=i+4) {

C[i] = A[i] * B[i];

C[i+1] = A[i+1] * B[i+1];

C[i+2] = A[i+2] * B[i+2];

C[i+3] = A[i+3] * B[i+3];

D[i] = D[i-1] + 1;
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}

Listing 8: An unrolled loop cannot be vectorized

• Memset/memcpy based array accesses: Consider the example in Listing 9 where the
loop body is a statement equivalent to the statement C[j] = A[j] + B[j] and yet, while the
latter would be easily optimized by Polly to remove the outer i loop, the former is left as it is.

for (i=0; i<N; i++) {

for (j=0; j<N; j++) {

memset(C+j, A[j] + B[j], sizeof(int));

}

}

Listing 9: Memset based array access
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