
Lab 2  
Iterative Dataflow Analysis Framework  

 
 

Part (a)​: In class, we discussed many interesting data flow analyses such as Reaching              
Definitions, Liveness analysis, etc. Although these analyses are different in certain ways, for             
example, they compute different program properties and analyze the program in different            
directions (forward, backward), they share some common properties such as iterative           
algorithms, transfer functions, and meet operators. These commonalities make it          
worthwhile to write a generic framework that can be parameterized appropriately for            
solving a specific data flow analysis. Further, a well written iterative data flow analysis              
framework significantly reduces the burden of implementing new data flow passes, the            
developer only writes pass specific details such as the meet operator, transfer function,             
analysis direction etc. In particular, the framework should solve any unidirectional data            
flow analysis as long the analysis supplies the following: (1) Domain (including the             
Semi-Lattice) (2) Direction (Forwards/Backwards) (3) Transfer Function (4) Meet         
Operation (5) Boundary Condition (6) Initial Interior Points (Top).  
Careful thought should be given to how the analysis parameters are represented. For             
example, the direction could reasonably be represented as a boolean, while function            
pointers may seem more appropriate for representing transfer functions​.  

In this assignment, you will implement such an iterative data flow analysis            
framework for LLVM IR 

 
Part (b): You will now use your iterative data flow analysis framework to implement a               
forward data flow analysis (Reaching Definitions) and a backward data flow analysis            
(Liveness) in LLVM IR. As explained below in more details, each analysis should perform              
computation at program points.  
Liveness: On convergence, your Liveness pass should report all variables that are “live” at              
each program point.  
Reaching Definitions: On convergence, your Reaching Definitions pass should report all           
the definitions that “reach” each program point.  
 
  



int sum (int a, int b)  
{  
    int i;  
    int res = 1;  
    for (i = a; i < b; i++)  
    { 
      res *= i; 
    }  
    return res;  
} 
        ​(a) 
 
define i32 @sum(i32 %a, i32 %b) { 

entry: 
%0 = icmp slt i32 %a, %b 
br i1 %0,  %bb1, %bb3 

 bb1: 
%tmp = sub i32 %b, %a 
br  %bb2 

 bb2:  
 %1 = phi i32 [ 0, %bb1 ], [ %5, %bb2 ] 
 %2 = phi i32 [ 1, %bb1 ], [ %4, %bb2 ] 

%3 = add i32 %1, %a 
%4 = mul nsw i32 %2, %3 
%5 = add i32 %1, 1 
%6 = icmp eq i32 %5, %tmp 
br i1 %6,  %bb3, %bb2 

 bb3:  
 %res = phi i32 [ 1, %entry ], [ %4, %bb2 ] 

ret i32 %res 
} 
                        (b) 
 
Figure 1: (a) Simple loop code, and (b) corresponding optimized LLVM bytecode 
 
Implementation Issues 
The Single Static Assignment (SSA) form of LLVM intermediate representation presents           
some unique challenges when performing iterative data flow analysis.: 



● Values in LLVM are represented by the Value class. In SSA every value is guaranteed               
to have only a single definition point, so instead of representing values as some              
distinct variable or pseudo register class, LLVM represents values defined by           
instructions by the defining instruction. That is, Instruction is a subclass of Value.             
There are other subclasses of Value, such as basic blocks, constants, and function             
arguments. For this assignment, we will only track the liveness of           
instruction-defined values and function arguments.  

 
● φ instructions are pseudo instructions that are used in the SSA representation and             

need to be handled specially by both Liveness and Reaching Definitions. Since SSA             
requires that values have a unique definition at any program point (P), it is natural               
to wonder how a value that is live at P, but has different definitions on the paths                 
leading to it is handled. The SSA solution is to introduce φ instructions at the               
beginning of the basic block containing P, to “combine” all the different definitions,             
so that all the uses in the block (including at P), see only the definition by the phi                  
instruction. Consider the uses of φ(phi) instructions in Figure 1(b) as illustrations.            
You should carefully consider how your analysis passes are affected by φ            
instructions. The fact that you are working on code in SSA form will have              
ramifications on how your passes are implemented. For example, the way ϕ            
instructions are handled will determine the precision of your analysis. Think           
carefully about what this means to your implementation and briefly explain this in             
your assignment report. 

● Your passes should not output results for the program point preceding a phi             
instruction since they are pseudo instructions which will not appear in the            
executable. To guide you in formatting the output of your passes, the expected             
output of running Liveness analysis on the bytecode from Figure 1(b) is shown in              
Figure 2 (The live values are shown as underlined at the left-hand side).  

 
         define i32 @sum(i32 %a, i32 %b) { 
 entry: 

{%a, %b}  
%0 = icmp slt i32 %a, %b 

{%a, %b, %0}  
 br i1 %0,  %bb1, %bb3 
 bb1: 
{%a, %b}   
 %tmp = sub i32 %b, %a 
{%a, %temp}  
 br  %bb2 



 bb2:  
 %1 = phi i32 [ 0, %bb1 ], [ %5, %bb2 ] 
 %2 = phi i32 [ 1, %bb1 ], [ %4, %bb2 ] 
{%a,%tmp,%1,%2} 
 %3 = add i32 %1, %a 
{%a,%tmp,%1,%2,%3} 
 %4 = mul nsw i32 %2, %3 
{%a,%tmp,%1,%4} 
 %5 = add i32 %1, 1 
{%a,%tmp,%4,%5} 

%6 = icmp eq i32 %5, %tmp 
{%a,%tmp,%4,%5,%6} 
 br i1 %6,  %bb3, %bb2 
 bb3:  
 %res = phi i32 [ 1, %entry ], [ %4, %bb2 ] 
{%res} 
 ret i32 %res 

         } 
 

Figure 2 
 

Part (c):​ ​May-point-to Analysis 

In this part, you will need to implement a may-point-to analysis based on the framework               
you implemented. In other words, it computes sets of variable that each pointer may point               
to. The assumptions for the analysis are: 

● The variables allocated locally by LLVM IR instruction ​alloca and the global            
variables can be pointees.  

● A pointer can be an IR variable of some pointer type. 
● Should be field-insensitive i.e. if a pointer points to any field of an aggregate data               

structure variable, it is considered to point to the whole variable. 

 

 

 

 

http://releases.llvm.org/3.9.1/docs/LangRef.html#alloca-instruction


Lattice 

● Let Pointers (p) be the set of the pointers in the function and variables(v) be the set                 
of variables(allocated in the function and global symbols) accessed by the function. 

● The domain D for this analysis is Powerset(S), where S={p → v | p ∊ Pointers && v ∊                   
variables}.  

● The top is the empty set.  
● The bottom is S. 
● Direction of analysis is forward. 
● Meet operator is union. 
● On convergence, the pass should report the may points to information at every point              

of the program.  

Transfer function 

The analysis works at the LLVM IR level, so operations that the transfer functions process               
are IR instructions. You need to define transfer function specifically for alloca, load, store,              
getelementpointer, select, store, bitcast  instructions. 
 

● Arguments 
Pointer arguments can point to any global variable (but not local variables            
generated by alloca) 
 

● ‘alloca’ instruction: 
The ‘​alloca​’ instruction allocates memory on the stack frame of the currently            

executing function, to be automatically released when this function returns to its            

caller. The return value is a pointer to the allocated variable. The ‘​alloca​’             

instruction is commonly used to represent automatic variables that must have an            

address available. 

%ptr = alloca i32                     ; yields i32*:ptr 

%ptr -> %ptr 

● ‘bitcast .. to’ instruction: 

The ‘​bitcast​’ instruction takes a value to cast and a type to cast it to. If the                 

source type is a pointer, the destination type must also be a pointer of the same                

size.  

%Y = bitcast i32* %x to i64*         ; yields i64*:%x 

If  %x  ->  setV,  then  %Y  ->  setV 



 

● ‘getelementptr’ instruction 

The ‘​getelementptr​’ instruction is used to get the address of a subelement of an              

aggregate data structure. It performs address calculation only and does not           

access memory. The first argument is always a type used as the basis for the               

calculations. The second argument is always a pointer and is the base address to              

start from. The remaining arguments are indices that indicate which of the            

elements of the aggregate object are indexed. The return value is a pointer to an               

inner field of the aggregate variable. 

   ​%4 = getelementptr inbounds i32* %arr, i32 %i.0  

%4  -> %arr 

 

● ‘load’ instruction 

The ‘​load​’ instruction is used to read from memory. The argument to the ​load              

instruction specifies the memory address from which to load. The interesting           

case is when the the value loaded (result) is a pointer itself. 

<result> = load [volatile] <ty>, <ty>* <pointer> 

If  (pointer  ->  X,  X-> setV)  then  (result  ->  setV) 

  

● ‘store’ instruction 

The ‘​store​’ instruction is used to write to memory. There are two arguments to              

the ​store instruction: a value to store and an address at which to store it. The                

interesting case is when the the value stored is a pointer itself. 

store [volatile] <ty> <value>, <ty>* <pointer> 

 ​If  (value  ->  setV,  pointer-> Y)  then  (Y  ->  setV) 

 

 

● ‘select’ instruction 

The ‘​select​’ instruction is used to choose one value based on a condition,             

without IR-level branching. The interesting case is when the the values chosen            

are pointers. 

 

<result> = select selty <cond>, <ty> <val1>, <ty> <val2>  

If  (val1  ->  X,  val2 -> Y)  then  ( result  ->  X U Y ) 



 

 

● ‘phi’ instruction 

The ‘​phi​’ instruction takes a list of pairs of (values, predecessor basic block) as              

arguments, with each pair for each predecessor basic block of the current block.             

It logically takes on the value specified by the pair corresponding to the             

predecessor basic block that executed just prior to the current block. Similar to             

select, ​the interesting case is when the the values chosen are pointers. 

<result> = phi <ty> [ <val0>, <label0>], … 

If  (val0  ->  X,  val1 -> Y … . )  then  ( result  ->  X U Y . . . ) 

 

● File reference_code contains an example C code and its corresponding LLVM bit            
code. The expected output of running may points to analysis on the bytecode is also               
shown in the file  on the left hand side.  

 
Assumptions (for all above parts): 

● The implemented analyses should be intra-procedural, thus only analyzing the          
bodies of functions. 

● Your implementation will be tested on simple C functions having pointers. 
● You may assume that the testing functions do not make any functions calls.             

However, LLVM does insert calls to intrinsics for analysis and optimization           
purposes. Ignore such “call instructions” during analysis 
 
 

Submission instructions:  
You need to submit: 

● source code for your framework 
● source code for liveness pass 
● source code for Reaching definitions pass  
● source code for may-points to analysis pass 
● the associated Makefiles 
● 5 example C programs (having pointers, using global variables, taking arguments)           

on which you tested your passes (Test cases) 
● Readme describing instructions to build and run your code 
● Also, remember to do a good job of commenting your submitted code. 


