
 COL 729 COMPILER OPTIMISATIONS

 LAB 1
 UNDERSTANDING LLVM IR AND CLANG OPTIMISATIONS

 SUBMITTED BY-
 NAMRATA JAIN
 2018MCS2840

1. Optimisation level -O0

No optimisation

2. Optimization level -O2

At optimization level -O2, the compiler performs comprehensive optimization, which includes the following techniques:.

1. Global assignment of user variables to registers (register allocation).
2. Strength reduction and effective use of addressing modes.
3. Elimination of redundant instructions, known as common subexpression elimination
4. Elimination of instructions whose results are unused or that cannot be reached by a specified control flow, known as dead code
elimination.
5.Algebraic simplification.
6. Movement of invariant code out of loops.
7. Compile-time evaluation of constant expressions, known as constant propagation.
8. Control flow simplification.
9. Instruction scheduling (reordering) for the target machine.
10. Loop unrolling and software pipelining -
If the loop does thingA and then thingB, we can move thingA out above the loop, then rotate the loop so it looks like thingB and then
thingA.
11. Branch prediction

Specific to LLVM IR:

1. Repetitive Allocations were removed. Some of the alloc get replaced with phi nodes. �

2. Loop-Closed SSA Form
It adds phi nodes for every live variable at the end of the basic block because this might expose optimizations done by other passes.

X86 ASSEMBLY:
Generates highly optimized code but has slow compilation time.

1. Move 0 replaced by xor of the register with itself.

2. More registers are used instead of storing values on stack.

1. LLVM IR

a. emptyloop O0

b. emptyloop O2

Memory allocations removed for those variables which are not required.
Empty loop removed from the code.

c. fib O0

d. fib O2

Explicit memory allocations removed for local variables and function arguements. Two call statements replaced by 1 using phi nodes
determining the entry point for this node of the CFG.

e. fibo_iter O0

f. fibo_iter O2

Explicit memory allocations removed for local variables and function arguements. Loop operations simplified using phi node
instruction which determines the live variables and thus specufying the values of fibo_cur and fibo_prev to be used.

g. gcd O0

h. gcd O2

Explicit memory allocations removed for local variables and function arguements. Unnecessary moves and stores removed. Loops
simplified using phi nodes.

i. print_args O0

j. print_args O2

Explicit memory allocations removed for local variables and function arguements. Use of phi node to determine what value to return
instead of storing it in a variable and thus removed the instructions not required.

k. loops O0

l. loops O2

The generated code for level O2 for sum and add_arrays has more instructions than level O0 as sometimes, the higher optimizations
add no reasonable benefit but a lot of extra size.

2. x86 ASSEMBLY (GCC)

a. emptyloop O0

b. emptyloop O2

All instructions related to the loop are removed. Explicit memory allocations removed for local variables and function arguements.

c. fib O0

d. fib O2

Registers are being used for local variables instead of storing on stack. Two calls to fib replaced by one call.

e. fibo_iter O0

f. fibo_iter O2

Unnecessary moves and store instructions related to stack removed. Some arithmetic operations not done by requiring one operand in
eax register.

g. gcd O0

g. gcd O2

Some moves and store related to storing intermediate values, local variables on stack are removed

i. loops O0

j. loops O2

sumn and is_sorted functions remove unnecessary move and stores. The code for add_arrays and sum is bigger in size for this level.

k. print_args O0

l. print_args O2

Some move, store instructions removed related to stack.

3. REFERENCES

a. https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

