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1 General Remarks

This document is organized as follows. The complete analysis of each program occupies one section,
with the descriptions of the generated LLVM/x86 codes for O0 and O2 optimization levels provided
in the corresponding subsections. Note that all the generated files are packaged in the archive and
each subsection title mentions the file name which it is describing.

1.1 LLVM

In the LLVM descriptions, only relevant functions are described. Various target related definitions
and function calling attributes are not described.

To create the performance graphs for LLVM, we use the tool lli which runs LLVM bitcode
directly via a Just-in-Time (JIT) compiler.

1.2 x86 Assembly

The x86 Assembly has been generated by the given Makefile, which generates assembly in the GNU
Assembler format (aka the GAS format). This format has a bunch of directives for the assembler
(e.g. .cfi *, .text, .align etc.) which are irrelevant for our purposes and aren’t described. Also
notice that the descriptions are for the files named <progname>.i386.O{0|2}.s that are generated
by the Makefile directly from the corresponding LLVM bitcode for the corresponding optimization
level.

Note that the assembly code is generated in AT&T syntax. Most instruction names have an
l-suffix, which denotes that the operation happens on a 32-bit integer.

Figure 1 shows the typical C calling convention which is used in most generated codes for O0,
but O2 typically optimizes away most of the callee convention as we will see. To return a value, the
callee places it in the %eax register from where the caller picks it up.

To create the performance graphs for x86, we generate O0, O2 and O3 versions of the x86 assem-
bly using the LLVM O2 bitcode. This is as per the given Makefile (lines 45-52 of the Makefile).
Note therefore that the x86 O0 code in the performance graphs does not correspond to the x86 O0
code in the descriptions, which describe the assembly code obtained directly from LLVM O0 bitcode.

2 GCD

2.1 Source code (gcd.c)

The function gcd1 implements the standard Euclid’s algorithm for computing the GCD of two
numbers in a recursive fashion, whereas gcd3 implements the same algorithm in an iterative fashion.
The code in gcd2 is a slight variant of the above algorithm where the remainder a % b is calculated
by repeated subtraction a = a - b till a <= b.

2.2 LLVM - O0 (gcd.O0.ll)

gcd1

Entry code for gcd1 starts from line 8 where first a memory location is allocated for holding the
return value. Lines 9-12 simply allocate the local variables a and b on the stack memory. Line 13
loads the value b to %0 and the comparison on line 14 corresponds to checking !b, which, if true,
returns a as per the source program (lines 18-20). If not, the function gcd1 is called again with
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Figure 1: C calling convention for x86 Assembly.

arguments b and a % b (lines 23-27, where a % b is calculated using the srem instruction). Note
that function return is implemented by first storing the desired return value to the address %retval
and then loading it and returning it in the return section (lines 32-33).

gcd2

Entry code for gcd2 starts similarly (lines 39-42) and the while loop starts with checking the condition
a != b inside the while.cond section (lines 46-48). This is followed by a straightforward translation
of the body of the while loop and the if-else branches therein in sections while.body, if.then and
if.else. At the end of the if-else block, i.e. in the if.end section, a jump back to the label
while.cond implements the looping behavior. Finally, when the while loop exits (i.e. the condition
on line 48 becomes false), the value %a is returned (lines 75-76).

gcd3

Entry code for gcd3 is also similar (lines 82-84). The while loop starts with the condition check in
while.cond where if b!=0 then the loop enters the body, which is equivalent to the check while (b)

in the source program. This is followed by a straightforward translation of the loop body (notably,
a % b is implemented using the srem instruction). Before jumping to the next iteration at line 103,
the new values of a and b are stored in the corresponding pointers %a.addr and %b.addr (lines 100,
102). Finally, when the loop exits, the value stored in %a.addr is returned (lines 106-107).

Note that the labels defined within a function do not clash with the labels defined within another
function. This allows us to use the same names for various labels defined within the same module
but different functions (e.g. labels like while.cond, if.else etc.).
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2.3 LLVM - O2 (gcd.O2.ll)

gcd1

In the O2 version of gcd1, the most interesting bit is how the recursive call is tail optimized to give
an iterative loop-based implementation to the code. The code in section if.end reflects the body
of each iteration of this loop. Loop variables %a and b are stored as variables %b.tr6 and %a.tr5,
which are initialized to the input arguments a and b (lines 15-16) when the loop is entered the first
time (i.e. when the source of entry is %if.end.preheader). For subsequent iterations, loop variable
for a is equal to the previous b (line 16) and the loop variable for b is equal to a % b (via the variable
%rem as per lines 15 and 17). This implements the source program’s logic of recursively calling gcd1

with (b, a % b). When the loop exits (lines 18-19), a % b = 0 and b is returned (line 22). This is
equivalent to the source program which, when called with (b, a % b = 0), returns b (lines 4-5 of
the source program).

gcd2

In the O2 version of gcd2, there are two different control flow paths - one followed when a>b and the
other when b>=a. The common entry point to the loop is entry where the condition a=b is checked,
which, if true, directly returns a (lines 33-34 and 69). If not, the path while.body.lr.ph ->

while.body -> if.then -> while.body.lr.ph is followed when a>b, and the path while.body.lr.ph

-> while.body -> while.cond -> while.body is followed when b>=a, with necessary path switches
happening inside while.body (lines 50, 52).

When a>b, the if.then branch is taken where %sub calculates a-b (as in line 13 of the source
program). For the next iteration, the value of a is assigned to be %sub (line 41), thus emulating a

=- b. Also, the loop exits with the value b if %sub = b (lines 56-58, 65, 69). This is equivalent to
the exit behavior in the source program where first a becomes equal to a-b (line 13 of the source
program), and then a becomes equal to b.

When b>=a, the while.cond branch is taken, before which %sub2 calculates b-a (as in line 16 of
the source program). For the next iteration, the value of b is assigned to be %sub2 (line 49), thus
emulating b =- a. Also, the loop exits with the value a if %sub2 = a (lines 51-52, 45-46, 61, 69).
This is equivalent to the exit behavior in the source program where first b becomes equal to b-a

(line 16 of the source program), and then b becomes equal to a.

gcd3

The O2 version of gcd3 is exactly like the above tail-optimized O2 version of the recursive function
gcd1, with minor renamings.

2.4 x86 - O0 (gcd.i386.O0.s)

gcd1

Code for gcd1 starts with the function prologue of saving the caller’s %ebp at line 9, updating the
%ebp to point to this stack position at line 14 and offsetting the %esp to allow space for some local
variables at line 17 (refer Figure 1). Then, in lines 18-22, input argument a is stored in %ecx and
-8(%ebp), while input argument b is stored in %eax and -12(%ebp). The comparison !b happens
at line 22, which, if true, copies the result a to %eax (lines 25-27, 41-44).

If b!=0, the arguments for the recursive gcd1 call are prepared (lines 29-37). By line 32, %eax and
%ecx store a, and b is spilled to memory at locations -16(%ebp) and -12(%ebp). The instruction
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cltd on line 33 simply sign-extends the contents of register %eax to create a 64-bit word %edx:%eax.
This is done to create space for the next idivl instruction which divides the contents of the 64-bit
register %edx:%eax (i.e. a) by the argument -12(%ebp) (i.e. b), and stores the remainder a%b at
%edx (and quotient at %eax). Lines 35-36 then move the spilled over b to top of the stack and line
37 moves a%b to a +4-byte offset from the stack pointer, thus completing the caller’s convention of
placing input arguments in reverse order on the stack before invoking gcd1 (line 38). Finally, the
result returned by gcd1 in %eax is moved to a standard location -4(%ebp) (line 39) from where it
is returned to the caller (lines 41-44).

gcd2

Code for gcd2 starts with the usual function prologue in lines 55-67, after which input argument a

is available at -4(%ebp) and b is available at -8(%ebp). Lines 70-71 perform the a!=b check, and
return a if the check fails (line 95-98). If the check does pass, lines 75-77 evaluate the if condition
a>b, which if true, sets a = a-b for the next iteration (lines 80-83) and if false, b = b-a (lines 87-
90). Finally, the common jump target of both the branches makes a jump back to checking the loop
condition (line 93). Notice that -4(%ebp) stores the latest value of a (line 83) which is returned by
copying it to %eax (line 95).

gcd3

The code for gcd3 starts from line 109 with the usual callee convention of the function prologue
(lines 109-117). By line 121, -4(%ebp) stores a and -8(%ebp) stores b (refer Figure 1). At this point,
the loop condition is checked, and the value of a stored in -4(%ebp) is returned if the condition fails
(lines 124-125,138). If the loop condition is satisfied, first, the temporary variable tmp is stored at
-12(%ebp), initialized to b (lines 128-129). Then lines 130-132 evaluate the remainder a%b to the
register %edx similar to how it was done in gcd1, and the assignment b=a%b is made at line 133.
Finally, lines 134-135 implement the assignment a=tmp and the loop condition is checked again (line
136).

2.5 x86 - O2 (gcd.i386.O2.s)

gcd1

In the O2 version, the most notable optimizations are that most register-memory interactions are
replaced by register-register interactions, and the recursive call to gcd1 is tail optimized to save the
overhead of creating a new frame for a function call. Lines 9-10 move input arguments a to %eax

and b to %edx, and line 11 makes the test if b=0 and returns a, already stored in %eax, in this case
(line 12, 28). If b!=0, then control enters section .LBB0 2, which is a tail optimized loop version of
the recursive call to gcd1 that maintains the following invariant: %eax stores the first argument of
gcd1, say a’ and %edx stores the second argument of gcd1, say b’. Lines 16-18 store the remainder
a%b to %edx similar to the O0 case, and line 19 stores b to %eax. Thus, a’ = b and b’ = a%b for
the next iteration. Line 20 encodes the exit condition b’=0 which corresponds to the base case of
the recursion in the source program, that when reached jumps to return the result a’ (lines 19-21,
23-24).

gcd2

The O2 version optimizes away register-memory interactions, and follows a much simpler callee
convention based directly on the stack pointer. Refer Figure 1 to see that in lines 39-40, %eax stores
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Figure 2: Cumulative CPU times of gcd1, gcd2 and gcd3 for 107 invocations each.

b and %ecx stores a. The condition on line 41 compares a and b for equality, and jumps to returning
the value a (stored in %ecx) if they are equal (lines 42-45). If a!=b, %edx stores b-a (lines 49-50)
and the source program’s ”then” branch is taken if b-a<0, i.e. a>b (line 51). Over here (lines 60-62),
%ecx now stores the updated value of a, i.e. a-b (line 60) and the comparison on line 61 checks if
a!=b holds for the updated a (it returns %eax holding b in this case as per line 64, but since a and
b are now equal, it doesn’t matter). If the ”else” branch was taken on line 51 (i.e. lines 54-57), it
sets b=b-a (line 54), and the comparison on line 55 is made which checks if b-a=a, or, equivalently
since b has been updated to b-a, if b=a, which is the loop condition. If the condition fails, then the
loop runs again (line 56), otherwise, the value of a stored in %ecx is returned (lines 66-67).

gcd3

The O2 version of gcd3 works exactly like the tail-optimized version of gcd1 described above.
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2.6 Performance

Figure 2 shows the cumulative CPU times of gcd1, gcd2 and gcd3 for 107 invocations. First, note
that gcd2 is orders of magnitude slower than gcd1 and gcd3. This is because the remainder a%b

is implemented via repeated subtraction in gcd2 whereas it is implemented via a single hardware
instruction in gcd1 and gcd3. The speed-up obtained from LLVM O0 to O2 can be attributed
to the switch from register-memory interactions to register-register interactions (and some tail-
call optimizations in case of gcd1). Since all the x86 codes are generated from the LLVM O2
bitcode, they all include the optimizations introduced by LLVM at the bitcode level, and thus the
performance of x86 O2 is quite similar to the performance of LLVM O2 bitcode. However, x86 O0,
even though inherited from LLVM O2 bitcode, re-introduces many additional register spills to the
memory, leading to a significant jump in the execution time. The optimizations at O3 level hardly
produce any effect.

3 Loops

3.1 Source code (loops.c)

The function is sorted checks if an array is sorted in the increasing order or not by iterating over
the array and returning false if for any two adjacent elements, the element at the lower index is
bigger than the element at the higher index. Function add arrays adds two arrays in a pairwise
manner and stores the result in a third array. Function sum calculates the sum of a char array by
casting each element as an integer and adding them. Function sumn calculates the regular sum of
first n integers, starting from 0.

3.2 LLVM - O0 (loops.O0.ll)

is sorted

The code for the function is sorted starts from line 8 and lines 8-14 implement the code for
allocating memory for the local variables and return value, and storing the initial values at those
memory locations. The logic for the for loop begins with the label for.cond where %cmp holds the
boolean variable checking if i<n-1. If the condition is true, the loop enters the body at for.body,
where lines 25-29 load the value at the memory location for a[i] in %4 and lines 30-35 load the
value at the memory location for a[i+1] in %7. It is interesting to note that the indices i and i+1

were casted to 64-bit integers (lines 26 and 32) as the compilation was done for a 64-bit architecture,
thus, it is required to have a 64-bit address for the memory locations of the array. The comparison
a[i] > a[i+1] is made at line 36, and false is returned if the comparison was true (line 40). If the
comparison was false, the if.end branch is taken where i is incremented in the for.inc section.
After the increment the jump is made to check the loop condition again (line 50) from where the
loop exits and returns true if the loop condition was false (lines 22, 53-54 and 57-58).

add arrays

The code for add arrays starts with the usual allocation of memory for the local variables and
their initialization (lines 64-73). The loop condition is checked in for.cond, and the loop enters
for.body if the loop condition was true (lines 79-80). Within the loop body, a[i] is stored in %4

(lines 83-87), b[i] is stored in %7 (lines 88-92) and their sum is stored in c[i]’s memory location
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at line 98. Finally, the jump to the loop incrementer for.inc is made from where the rest of the
logic is trivial.

sum

The code for sum starts with allocating and initializing local variables and function arguments (lines
114-121). Notice that the type of %a is i8* since a is declared as an unsigned char pointer and
the LLVM representation of a char takes 8 bits. After evaluating the loop condition in for.cond,
the loop body for.body is entered. Here, %4 stores the char stored at a[i]. Before adding a[i] to
ret as per line 22 of the source program, a conversion is made from i8 to i32 by a zero extension
(zext) to emulate the casting operation of a char to an int. Finally, the resulting sum is stored in
%ret (lines 137-139) and control is passed to the loop incrementer for.inc from where the rest of
the logic is trivial.

sumn

The code for sumn starts at line 154 and follows pretty much the same logical flow as sum, except
that there is no casting taking place in the loop body.

3.3 LLVM - O2 (loops.O2.ll)

is sorted

In the O2 version of the is sorted function, the loop variable i is represented by the variable
%indvars.iv. When the loop enters the first time (i.e. the source of the phi node at line 13 is
entry), the value of this loop variable is 0, corresponding to the initialization int i = 0. For
subsequent iterations, the value of this loop variable is %indvars.iv.next (line 13), which denotes
i+1 from the previous iteration (line 20), and thus it corresponds to the increment operator i++ in
the source program loop. Within the loop body for.body, the comparison a[i] > a[i+1] is made
as %1 stores a[i], %2 stores a[i+1] and the comparison happens at line 23. As for the return value
of the function, if it returns from within the loop body (as in from line 7 in the source program),
then the return value is false, otherwise the return value is true (line 27).

add arrays

In the O2 version of the add arrays function, loop vectorization is employed to perform addition
in SIMD fashion, operating on a vector of 4 ints at a time. The code starts with a comparison
n>0, which, if false, leads to a straight return, since in this case, the loop doesn’t do anything. In
the loop body for.body.lr.ph, %n.vec on line 42 stores the largest multiple of 8 that is still less
than the input n (this is achieved by performing an and operation with 8589934584 whose binary
representation is 111111111111111111111111111111000). Thus, %n.vec determines the boundary
upto which the vectorized operations can take place. If %n.vec = 0, it means that n < 8, and
in this case, %middle.block is executed, which performs the non-vectorized addition. Otherwise,
control enters the vectorized evaluation (line 47).

However, since the array c is reading values written by arrays a and b, it is important for correct
vectorization that the range of memory locations of array c does not overlap with the range of
memory locations of arrays a or b. This check is performed in the section named vector.memcheck

where %found.conflict denotes the fact that the ranges of a and c are overlapping (lines 46, 50-
53), while %found.conflict21 denotes that the ranges of b and c are overlapping (lines 54-57).
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If the ranges do overlap, then the non-vectorized version written in %middle.block is executed.
Otherwise, control enters the vectorized version vector.body.preheader (line 59).

Inside the vectorized version vector.body, %index denotes the loop variable i that jumps 8
elements in each iteration (via variable %index.next as per lines 65 and 89), since each iteration
evaluates the sum for 8 elements by performing two 4-int long vector addition operations. For
example, %wide.load (line 68) is a vector of the first four ints beginning from a[i], %wide.load23
(line 72) is a vector of the second four ints beginning from a[i+4] (note that the operation or i64

%index 4 on line 69 is equivalent to the operation add i64 %index, 4 if %index is a multiple of 8,
which it is). The operations on lines 80 and 81 perform the two vector add operations on the first
and second 4-int long vectors, and lines 82-88 store these to the corresponding locations in c. If the
end of vectorized operations has reached, an exit is made to operate on the rest of the elements in
a non-vectorized fashion (lines 90-91, 94). Otherwise, the loop is executed again.

In the non-vectorized version, i.e. middle.block, %resume.val stores the index of the beginning
of the non-vectorized execution, which is %n.vec in case some part of the array was executed in
a vectorized manner, and 0 if either n<8, or if the memory check failed, leading to no vectorized
execution. The code in for.body.preheader checks if the remaining number of iterations, i.e. %n

- %resume.val is even or odd (lines 102-107). If it is even, the code in for.body is executed, which
performs two addition operations in one iteration before looping back. Otherwise, a single addition
operation is performed in for.body.prol first, and then the control is transferred to for.body for
executing the remaining even number of iterations.

sum

The O2 version of the sum function is structured similar to the O2 version of the add arrays

function. In the beginning section for.body.lr.ph, the boundary of the vectorized calculation
%n.vec is obtained similarly to the code in add arrays (line 175). If %n.vec = 0, i.e. n<8, control
enters %middle.block, otherwise it enters the vectorized section %vector.body.preheader. Note
that in this case, the vector memcheck operations are not required, since there is no contention
between reading from and writing to the same block of memory.

Inside the vectorized section %vector.body, loop variable i is denoted as %index, which jumps
8 elements in one iteration (lines 183 and 197). In each iteration, the elements of %vec.phi store
the sums of all the elements of the array a whose indices are (0 mod 8), (1 mod 8), (2 mod 8)

and (3 mod 8) respectively, whereas the elements of %vec.phi8 store the sums of all the elements
whose indices are (4 mod 8), (5 mod 8), (6 mod 8) and (7 mod 8) respectively. The loop exits
when all the elements in the vectorized part of the array have been covered (lines 198-199). When
the loop exits, we have two arrays %.lcssa and %.lcssa21 with values of the form [s0, s1, s2, s3] and

[s4, s5, s6, s7] respectively (lines 202-203), and the final sum of the vectorized part is
∑7

i=0 si. This
is what is calculated in the variable %12 in %middle.block on line 215 (note that shufflevector

instruction on line 211 produces a vector whose first two elements are the 3rd and 4th elements (2nd
and 3rd, when counting from 0) of the array %bin.rdx). If the number of elements in the array is a
multiple of 8, then this is the final result, and thus the code at line 217 exits, returning %12 at line
292. Otherwise, control enters %for.body.preheader where the sum of the rest of the elements is
calculated.

In %for.body.preheader, the condition at lines 224-226 ensures that if the number of remain-
ing elements is a multiple of 4, then control enters for.body.preheader.split, and subsequently
for.body, where the sum is obtained by inlining the summation code 4 times (see repeating pattern
in lines 256-261, 262-267, 268-273 and 274-279). If not, the control enters for.body.prol where
each iteration performs a single summation operation, and the variable %prol.iter keeps track of
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whether the remaining number of elements is now a multiple of 4, in which case it transfers control
back to for.body (line 241).

sumn

The O2 version of the sumn function gets rid of the loop altogether and tries to calculate the sum

of first (n-1) naturals directly using the formula (n−1)(n)
2 . First, the numbers n − 1 and n − 2 are

zero-extended to 33 bits to allow for some overflow (lines 304 and 306). Then, %4 stores (n−1)(n−2)

and the right-shift operation at line 308 causes %5 to store (n−1)(n−2)
2 (and %6 to store it’s 32-bit

truncated version). Finally, %7 stores (n−1)(n−2)
2 + n and %8 stores (n−1)(n−2)

2 + (n− 1) = (n−1)(n)
2 ,

which is returned on line 315 (if n was 0, 0 is returned directly).

3.4 x86 - O0 (loops.i386.O0.s)

is sorted

The code for is sorted starts with the usual function prologue, and by line 22, -8(%ebp) stores the
input argument *a (which is an address to the array a), -12(%ebp) stores n and -16(%ebp) stores
i (initialized with 0). Notice that the word -4(%ebp) is left empty as it will be used (partially) for
storing the return value. Lines 25-28 check the condition i<n-1, which, if false, returns true (line
51).

If the loop condition is satisfied, the loop body is executed in lines 32-37. First, lines 32-33 store
i in %eax and *a in %ecx. Then line 34 stores the value of a[i] to %edx and line 35 stores the value
of a[i+1] to %eax (note that (%ecx,%eax,4) evaluates (address stored in %ecx) + 4*(value stored
in %eax), where 4 represents the size of the data type of the array, i.e. int). Finally, the comparison
a[i]>a[i+1] is made on line 36, which, if true, makes the control return false (lines 39-40), and if
false, performs the loop increment i++ (lines 46-48).

The return logic (lines 53-57) is as follows: -1(%ebp) is the byte (which is part of the word
-4(%ebp)) that stores the value 1 or 0 for return values true and false respectively. This is moved
to the 8-bit register %al on line 53 (notice the suffix b in the movb instruction). The instruction at
line 54 ensures that all higher order bits are set to zero, and line 55 simply extends the return value
in %al to the extended register%eax. Lines 56-57 perform the usual callee-side function epilogue by
updating the %esp and restoring the %ebp.

add arrays

Code for add arrays starts with the usual function prologue at line 69 and by line 89, we have that
-4(%ebp) stores the caller’s %esi register, -8(%ebp) stores *a, -16(%ebp) stores *b, -24(%ebp)

stores *c, -28(%ebp) stores n and -32(%ebp) stores i (initialized to 0). The loop condition i<n

is checked in lines 92-94 and if not satisfied, the loop simply returns without caring about what is
stored in %eax (since the function return type is void). If the loop is entered, lines 97-98 store i in
%eax and *a in %ecx. Accordingly, line 99 stores the value at a[i] to %ecx. Similarly, lines 100-101
store the value at b[i] to %edx. Line 102 stores a[i]+b[i] to %ecx, and lines 103-104 store this
value to the address c[i]. This finishes the loop body, and control now enters the loop incrementer
in lines 107-110 where i++ is performed before looping back to the loop condition check.
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sum

Code for sum starts with the usual function prologue at line 126 and by line 140, we have that
-8(%ebp) stores *a, -12(%ebp) stores n, -16(%ebp) stores ret and -20(%ebp) stores i (both i and
ret initialized to 0). Lines 143-145 evaluate the loop condition i<n, which, if fails, returns the initial
value of ret (lines 145,161). If the loop does execute, lines 148-149 store i to %eax and *a to %ecx.
The movb instruction at line 150 copies 1-byte (i.e. the length of a char) at address location a[i] to
the 8-bit register %dl, and line 151 simply extends it to the 32-bit register %eax since the addition
is to be performed with an int (ret). Lines 152-153 thus perform ret = ret+a[i]. Finally, lines
156-158 perform the increment i++ before looping back to the loop condition check.

sumn

The code for sumn follows the exact same logical flow as the code for sum described above, except
that there is no need to look up addresses. After line 187, -4(%ebp) stores n, -8(%ebp) stores ret

and -12(%ebp) stores i and lines 195-197 perform the assignment ret = ret + i of the loop body.

3.5 x86 - O2 (loops.i386.O2.s)

is sorted

In the O2 version, lines 9-28 push some callee-saved registers on the stack before loading arguments
and local variables to them. At the end of line 28, we have that %edi stores *a, %ecx stores n-1

and %edx, %esi store 0 (%edx actually stores i initialized to 0). Lines 32-46 handle the loop exit
condition; %al stores the flag that decides whether to exit the loop or not. Lines 34-35 set %al to
1 if i>=n-1 while lines 36-41 set %ah (and eventually %al) to 1 if n-1<=0 (note that lines 32-33 set
%ebx to 1 if n-1<0). When %al is set, the test at line 45 causes the jump at line 46 to happen, which
returns true (lines 44, 57). Till the point %al is false, the loop body in lines 49-53 is executed where
line 49 stores a[i] to %eax, line 50 increments i and line 52 compares a[i] with a[i+1] (the adcl

instruction only takes care of the carry bit that may be generated while incrementing i). Finally, if
during the comparison it so happened that a[i]>a[i+1], we set %bl indirectly by setting %ebx to
0 at line 55 (recall that %bl actually refers to the lower 8-bits of the 32-bit register %ebx). This is
copied to %eax on line 57, thus returning false.

add arrays

The high level logic of the code follows directly from the logic described in the LLVM section of
add arrays’ O2 implementation. First, in lines 72-97, some callee-saved registers are saved and a
fall-through is implemented in case n<=0 (note that %ecx stores n). In lines 99-114, the boundary
for vectorized operations, i.e. %n.vec in the LLVM code, is calculated (line 108) and by the end,
%ebp stores *a, %edx stores *b and %esi stores *c. If %n.vec=0, i.e. n<8, a jump is made directly
to the non-vectorized %middle.block (lines 104-105, 110, 114). Before entering the vectorized code,
lines 116-138 perform a memory check to ensure that the memory bounds of the array c aren’t
overlapping with the memory bounds of arrays a and b. In lines 116-121, %edi stores the address of
c[n], %ebx stores the address of a[n] and if both 3(%esp) and 2(%esp) are set, it means that arrays
c and a overlap in memory. Similarly, in lines 122-126, %ebx stores the address of b[n], and if both
%bl and 1(%esp) are set, it means that arrays c and b overlap. The rest of the code till line 138
checks if any of these two cases happen, and if yes, jumps to %middle.block directly. Otherwise,
control enters vectorized execution.
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In the vectorized section (lines 141-149), %edx stores *b, %ebp stores *a and %ecx stores *c, while
%edi stores the loop variable i that increments by 8 in each iteration (line 148) and %eax stores
i+4. Vector addition operations are implemented via various vp* operations on %xmm registers which
are 128-bit registers that store four 32-bit integers as arrays. The elements of %xmm0 hold the sum
a[i′] + b[i′] for i′ = {i, i + 1, i + 2, i + 3} whereas the elements of %xmm1 hold the above sum for
i′ = {i + 4, i + 5, i + 6, i + 7}. On lines 147 and 158, these sums are copied to the corresponding
memory locations of array c. The loop runs till the vectorization boundary %n.vec is reached (lines
155, 159).

The code in lines 161-179 evaluates the remaining number of elements to perform addition on.
Lines 181-187 check if the remaining number of elements are even or odd (lines 185-186). If even,
the code in lines 196-213 is executed, where each iteration performs two addition operations before
looping back (see repeating pattern in lines 203-205 and 206-208). If odd, the code in lines 189-194
is executed which performs a single iteration of addition, after which the remaining even number of
iterations are executed via partial unfolding as above.

sum

The high level logic of the code follows the logic described in the LLVM section of sum’s O2 implemen-
tation. First, on line 271, the instruction %andl $-8, %edi stores the boundary of the vectorized
addition (i.e. %n.vec in the LLVM code) to %edi. Lines 272-273,276 check if %n.vec == 0 (i.e.
n<8), control enters %middle.block on line 316 where the non-vectorized addition is performed.

In lines 274-303, various xmm* registers are 128-bit registers that were added as part of Intel
Streaming SIMD Extension (SSE) instruction set and store four 32-bit integers as arrays. These
xmm* registers are used to implement various vector add operations required by the LLVM code
via various vp* instructions. In particular, the 4 integers stored %xmm0 accumulates the sums of
all elements of the array a (stored at 28(%esp)) that have indices 0 mod 8 to 3 mod 8, and %xmm1

accumulates the sums of all elements that have indices 4 mod 8 to 7 mod 8. %xmm3 and %xmm4 store
the local summands a[i] through a[i+3], and a[i+4] through a[i+7], respectively. Notice that
%ebp stores the loop variable i and increments 8 steps in one iteration (line 294) while %edx stores
i+4. The loop continues till the vectorized boundary is not hit (lines 301-303).

Lines 317-320 calculate the sum of the vectorized part (
∑7

i=0 si from the LLVM code) by
performing a horizontal sum of the obtained sums in %xmm0 and %xmm1. If we denote the con-
tents of %xmm0 by [s0, s1, s2, s3] and the contents of %xmm1 by [s4, s5, s6, s7] then line 317 stores
[s0 + s4, s1 + s5, s2 + s6, s3 + s7] to %xmm0, line 318 shuffles the new contents of %xmm0 such that the

horizontal sum on line 320 ensures that %xmm0 stores the entire sum
∑7

i=0 si, which line 321 stores
in %ecx. Lines 321-329 check if any remaining elements need to be added in non-vectorized way,
and the code from line 330 performs the non-vectorized addition. The high-level summation logic is
already described by the LLVM description: it is first checked if the number of remaining elements
is a multiple of 4 (lines 331-337), and if yes, partial unrolling of the loop is performed with each
iteration computing the sum of 4 elements (see repeating patterns in lines 360-361, 362-363, 364-365
and 366-367). If the remaining number of elements is not a multiple of 4, then direct addition is
performed in lines 345-357.

sumn

The code for sumn first stores n on %ecx (line 390), 0 on %eax (line 391) and compares if n<=0,
in which case it simply returns (lines 392-393,401). If n>0, lines 395 and 396 store n-1 on %edx

and n-2 on %eax. Line 397 computes the multiplication of implicit source operand %edx with the

13



C
PU

 ti
m

e 
(m

s)

0

10000

20000

30000

40000

LLVM O0 LLVM O2 x86 O0 x86 O2 x86 O3

(a) is sorted called on an array of 105 elements.
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(b) add arrays called on arrays of 105 elements.
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(c) sum called on an array of 105 elements
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(d) sumn called on an array of 105 elements

Figure 3: Cumulative CPU times of is sorted, add arrays, sum and sumn for 105 invocations each.

specified source operand %eax and stores the low bits and high bits of the result (n − 1)(n − 2)
on the second operand %eax and the third operand %edx respectively (in GAS syntax, the given
mulxl instruction is interpreted as mulxl src dest lo dest hi). The next instruction, i.e. shldl,

effectively computes the half of that, i.e. (n−1)(n−2)
2 . To see this, first note that (n−1)(n−2) is even

for any n, thus the least significant bit stored in %eax before line 398 is 0. The shldl instruction
(which should be read as shldl count src dest in GAS syntax) shifts the bits of the destination
operand (i.e. %edx, holding the high bits of (n − 1)(n − 2)) to the left count number of times (i.e.
31 times), and fills the open positions with bits from the source operand (i.e. %eax, holding the low
bits of (n− 1)(n− 2)). In effect, it shifts the first 33 bits of (n− 1)(n− 2) to the right by one bit,

and stores the result (n−1)(n−2)
2 on %edx. Finally, the instruction on line 399 adds n − 1 to that,

thus storing (n−1)(n−2)
2 + (n− 1) to the register %eax, which is where the caller expects the return

value. Note that (n−1)(n−2)
2 + (n− 1) = (n−1)(n)

2 , i.e. the sum of first n− 1 numbers, which was to
be calculated.
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3.6 Performance

Figure 3 shows the runtimes of various functions introduced in the loops file. The trend in
is sorted is largely because of the switch from register-memory interactions to register-register
interactions, which also explains the jump in x86 O0 (see similar explanation for gcd in Section 2.6).
In add arrays and sum though, notice that the jump in x86 O0 is still about 4-5 times better than
the LLVM O0 version. This is because the vectorization optimizations were introduced as part of
the LLVM O2 bitcode from which all x86 codes are inherited, and vectorization provides roughly 4
times speed-up since the lengths of the vectors were 4 ints each. After x86 O0, further speed up
in x86 O2/O3 is attributed to optimizing away various register spills. The performance graph for
sumn is perhaps most obvious - since the LLVM O2 bitcode transforms the sum calculation over a
loop to an O(1) formula calculation for the sum of first n-1 naturals, all x86 codes built on top of
this transformation are blazingly fast.

4 PrintArg

4.1 Source code (print arg.c)

The source code reads the first argument on the command line and prints it (and raises an error if
the number of arguments does not match).

4.2 LLVM - O0 (print arg.O0.ll)

The function @print arg defined on line 8 takes a 32-bit integer as the first argument argc, and
a pointer of type i8** as the second argument argv[], which is an array of strings in the source
program, i.e. an array of char arrays. A single char is represented as an integer of 8 bits (i8) in
LLVM, thus, a char array (i.e. a string) is represented as a pointer of type i8*, and an array of
strings is represented as a pointer of type i8**.

Line 10 allocates 32 bits for holding the return value and the address to this memory location
is saved in %retval. In order to return a value, the value is stored at the address %retval and the
code within the return label (lines 31-33) makes sure to read it and return it.

Lines 11-14 simply store the input arguments to the memory which lines 15 and 24 load again
(as we’ll see, this is unnecessary and is optimized away in O2).

Once the value of argc is stored in %0, it is compared with the literal 2 for inequality (line 16),
to check for the if condition on line 4 in the source program, and if the comparison was true, the br

instruction on line 17 is used to jump to the then branch if.then, where -1 is returned.
In the if.end branch, %1 is the value stored in argv.addr, i.e. the address to the array of strings

argv. Variable %arrayidx stores the address of the first element of the array of strings, and line 26
loads the corresponding string in %2 (this is what needs to be printed in the source program). The
code in line 27 makes a call to externally defined function @printf with the first argument being
the address of a constant string (@.str), and the second argument being the string stored in %2, i.e.
the first argument. The code for the externally defined function @printf would be available while
linking. Finally, the value 0 is returned (lines 28-29).

4.3 LLVM - O2 (print arg.O2.ll)

In the O2 version of the code, most glaringly, the unnecessary store and re-load operations of the
input arguments are gone. Instead, the input arguments are used as-is. The comparison logic (lines
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10-11) are similar to the O0 case, but the code for return uses a phi node now instead of an explicit
load/store on a %retval variable. If the comparison in line 11 is false (i.e. argc != 2), the source
of the phi node on line 20 becomes entry, and thus it returns -1, as required by the source program.

In case argc == 2, the branch if.end is taken, where %arrayidx stores the address of the first
element of the %argv string, and %0 stores the corresponding value. The flag !tbaa !1 directs the
compiler to perform type-based alias analysis. On line 16, a call to the externally defined function
@printf is made with the first argument as the address of a constant null-terminated string ”%s”
(i.e. the output of the getelementptr instruction), and the second argument as the variable %0,
i.e. the first element of the argv array. This line achieves the functionality of line 7 in the source
program. Finally a jump to the return label is made where the phi node decides to return 0 (as the
source of the phi node is now %if.end).

4.4 x86 - O0 (print arg.i386.O0.s)

Code for print arg starts at line 9 by the usual function prologue of pushing the caller’s %ebp to
the stack, updating the %ebp with the stack pointer at this point and offsetting the stack pointer
by some amount to allow space for some local variables (lines 9-17). Next, input argument argv

is stored in %eax at line 18, and input argument argc is stored in %ecx at line 19 (refer Figure 1).
This is followed by reloading these to stack in the current frame in lines 20-21 (argc in -8(%ebp)

and argv in -16(%ebp)). Then the comparison argc != 2 is made, which if true, returns -1 (lines
22-23, 25-26, 37-40).

If argc == 2, arguments are prepared for calling printf. %eax stores the constant "%s", and
%ecx stores argv[1] by line 30. This is followed by effectively pushing argv[1] followed by "%s"

to the stack (lines 31-32) to deliver the caller convention, before calling printf on line 33. Finally,
the return value 0 is saved at -4(%ebp) (line 34) from where it is returned to %eax (line 37). The
spill at line 35 is immaterial to the correctness of the code.

4.5 x86 - O2 (print arg.i386.O2.s)

Code starts at line 9 where the stack pointer is first 12 bytes to allow for some space. Notice that
%ebp is not updated and is not used. Refer to Figure 1 to see that 16(%esp) refers to the input
argument argc and 20(%esp) refers to the input argument argv. In lines 12-14, the comparison
argc != 2 is made, and -1 is returned via %eax if true. Otherwise, arguments are prepared for the
printf call. Lines 16-17 store the address of the char array argv[1] to %eax, line 18 moves it at
+4-byte offset from the stack pointer, and line 19 moves the constant "%s" at the position pointed by
the stack pointer (thus following the caller convention of pushing input arguments in reverse order
on the stack). Then the call to printf is made, but its return value stored in %eax is discarded and
replaced with a 0 before returning print arg itself (lines 21, 23-24).

4.6 Performance

Figure 4 shows the performance of print arg. It is apparent that none of the optimization passes
have any significant effect on the CPU time. That is because the program is largely an I/O-intensive
operation and thus, optimization passes have little effect on the CPU time. The real time however,
which includes the time spent waiting on I/O, shows a slow decline with optimization passes which
could be attributed to multiple I/O optimizations.
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Figure 4: Cumulative CPU time and real time for 107 invocations of print arg called with a
non-empty string.

5 EmptyLoop

5.1 Source code (emptyloop.c)

The source code reads the command line argument to determine the number of iterations to run.
If there is no appropriate command line argument, then the number of iterations defaults to the
integer maximum limit. Finally, when actually running the loop, the actual number of iterations is
the maximum of the number of iterations calculated as above, and a fixed magic number (0x54321
= 344865). Note that the loop doesn’t actually do anything.

5.2 LLVM - O0 (emptyloop.O0.ll)

Lines 6-14 have the logic of storing the input arguments argc and argv similar to the print arg

code above. One thing to observe is that in lines 10-11, the variables %i and %numiter point to
values of type i64 with an alignment of 8 bytes. This is because they are declared as unsigned

long in the source program. %0 stores the value of argc and the comparison of greater than or equal
to 2 is made in line 16.

If argc >= 2, then the if.then branch is taken, where %1 refers to the array of strings argv,
represented as an i8** (similar to how it was done for print arg above), and %2 contains the array’s
second element. In line 23, a call to the externally defined function atoi is made, and in line 24,
the return value is casted to a long using the sext instruction. Line 25 stores the address of the
casted value to the %numiter variable and jumps outside the if condition.

Outside the if condition, i.e. in if.end, the code for the for loop is written. Variable %i is
initialized with 0 (line 29) and a jump is made to for.cond, where the loop condition is evaluated.
%3 and %4 refer to the values i and numiter respectively. Lines 35-36 and labels cond.true,
cond.false emulate the calculation of the MAX function. An unsigned less than comparison is
made on line 35 because numiter is declared to be unsigned, and 344865 is the decimal value of the
variable MAGIC NUMBER defined at compile time. On line 46, the phi node stores the value of numiter
to %cond if it was greater than 344865, and 344865 otherwise, thus finishing the implementation
of the MAX function. Line 47-48 evaluate the i < MAX(...) condition and jump to the loop body
for.body if the condition is true. Inside for.body, since the loop body is actually empty, a jump
to for.inc is made directly where the variable %i is incremented by 1. When the loop condition
becomes false, control enters the for.end label where the value 0 is returned.
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5.3 LLVM - O2 (emptyloop.O2.ll)

In the O2 version, firstly, the unnecessary load/store of input arguments are gone (similar to
print arg), and the code starts with a comparison instruction. In the then branch of the if condi-
tion, %0 stores the first element of the argv array, and a call to strtol is made for directly converting
the string %0 (a char array actually) to a long, without first calling atoi and then converting an
integer to a long, as was done in the O0 case.

Finally, notice that outside the if condition, the entire logic for the for loop is removed because
the for loop was not doing anything (see line 18 where we simply return from the function).

5.4 x86 - O0 (emptyloop.i386.O0.s)

Code for emptyloop starts at line 9 with the usual function prologue and by line 29, we have that
-12(%ebp) stores argc, -16(%ebp) stores *argv, -32(%ebp) stores the low bits of numiter initialized
to INT MAX - 1 and -28(%ebp) stores the high bits of numiter (note that numiter is declared as
an unsigned long, and therefore it requires two words to represent it). On line 30, the condition
argc>=2 is checked. If the check passes, control enters the if body (lines 33-41) where first the
argument argv[1] to atoi is prepared on the stack before calling it (lines 33-34 store argv[1] to
%eax and lines 35-36 place it on the stack). In lines 38-41, the most significant bit (representing the
sign) of the integer returned by atoi is stored in -28(%ebp) while the original 32-bits are stored
in -32(%ebp). If the check argc>=2 didn’t pass on line 30, control directly enters line 43 at loop
initialization step where i=0 is declared by assigning two words to zero for i.

In lines 47-85, the value of MAX(...) call is evaluated. First, note that on line 69, %al=0

means that numiter>=MAGIC NUMBER (i.e. %cond.true on line 72) and %al=1 means that numiter

< MAGIC NUMBER. Now, notice that on lines 47-50, %eax and %ecx store the low and high bits of i

respectively, while %edx and %esi store the low and high bits of numiter respectively. %bl on line
52 is set if numiter < MAGIC NUMBER, and the branch at line 61 is taken if the high bits of numiter
are zero (see test at line 55), in which case %al on line 69 is determined solely on the basis of lower
bits of numiter, i.e. if %bl is set. If the high bits of numiter are non-zero, then lines 64-65 ensure
that %al=0, which is correct since the magic number is less than 232. If numiter>=MAGIC NUMBER,
then the value of numiter stored in -32(%ebp) is saved in -52(%ebp), with higher bits saved in
-56(%ebp) (lines 74-78). Otherwise, MAGIC NUMBER is stored in -52(%ebp), with higher bits saved
in -56(%ebp) as before (lines 81-85).

Finally, in lines 88-110, loop condition i<MAX(...) is checked. First, note that the loop exit
condition is true if and only if %al on line 108 is set. Now, on lines 88-100, %bl is set if i>=MAX(...)
for the lower order bits, and %bh is set if i>=MAX(...) for the higher order bits. If the higher order
bits of i and MAX(...) are equal (lines 94, 100), a jump is taken to lines 107-110 where %al is set
if %bl is set, i.e. i>=MAX(...) for the lower order bits. If the higher order bits of i and MAX(...)

are not equal, then %al is set if %bh is set (lines 94-95, 98, 103-104, 107-108), i.e. if i>=MAX(...)

for the higher order bits. If the loop exit condition denoted by %al is true, then a jump is made
to the return block (lines 124-129) where 0 is returned, otherwise, a jump to increment i is made
(lines 116-122).

5.5 x86 - O2 (emptyloop.i386.O2.s)

In the O2 version of the assembly code, the most important observation is that the loop that wasn’t
doing anything useful is removed. The code starts at line 9 by first moving the stack pointer to
allow for some space. Notice that the %ebp register is not updated and is not used to reference
addresses. Refer to Figure 1 to see how in this case 16(%esp) refers to the input argument argc
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and 20(%esp) refers to the input argument argv. Line 12 performs the comparison argc>=2, which,
if false, returns 0 directly, without executing the loop (lines 13, 22). If argc>=2, the statement
numiter = atoi(argv[1]) is executed. First, argv is loaded onto %eax (line 15), and at line 16,
a single byte offset from the address stored in argv is saved in %eax (i.e. %eax stores the value
pointed by argv[1]). Then lines 17-18 push this value to the top of the stack to perform the caller
convention of pushing the input argument before calling the function strtol (which is equivalent
to atoi). Finally, since the rest of the source code does not do anything useful, the return value of
strtol stored in %eax is discarded, and the value 0 is saved in %eax for returning (line 22).

5.6 Performance

Figure 5 shows the performance of emptyloop. The performance graph of emptyloop follows the
same trend as that of sumn in Figure 3d. Since the LLVM O2 bitcode completely optimizes away
the empty loop, all x86 codes based on this bitcode run blazingly fast.
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Figure 5: Cumulative CPU time for 104 invocations of emptyloop with argv[1] = 105.

6 FiboIter

6.1 Source code (fibo iter.c)

The source code calculates the n-th Fibonacci number in an iterative fashion in dynamic program-
ming style.

6.2 LLVM - O0 (fibo iter.O0.ll)

The entry point to the fibo iter function at line 8 starts with the usual allocating memory for
various local variables, and in particular, storing the input argument n in variable %0. The unsigned
comparison at line 16 determines if n<3 and is unsigned because n is declared unsigned int. The
if.then branch trivially returns 1 as the answer by storing it as the value of the address %retval.

The if.end initializes the %fibo cur and %fibo prev variables with 1, and begins executing the
for loop. for.cond evaluates the condition i <= n (line 32), for.inc increments i, and for.body

is the body of the loop. Inside the loop body, lines 36-38 correspond to the assignment tmp =

fibo cur, where the truncation from a 64-bit integer to a 32-bit integer happens because %fibo cur

is defined to be unsigned long while %tmp is defined to be unsigned int. Symmetrically, the
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reverse assignment fibo prev = tmp (lines 43-46) involves an extension operation from a 32-bit
integer to a 64-bit integer (line 44). Note that the instruction zext is used instead of sext because
both tmp and fibo prev are declared as unsigned. Lines 39-42 implement the code fibo cur +=

fibo prev from the source program in a trivial fashion.

6.3 LLVM - O2 (fibo iter.O2.ll)

The declarations of local variables is removed in the O2 version and the control directly enters the
instruction to compare if n<3 (line 8), in which case, the value 1 is returned (lines 29-30).

The body of the for loop is implemented in the section labeled for.body, and loop variables i,
fibo prev and fibo cur are stored as %i.09, %fibo prev.08 and %fibo cur.07 respectively. When
the loop enters the first time (i.e. when the source of these phi nodes is %for.body.preheader),
these nodes get the values i=3 (line 15), fibo prev=1 (line 16) and fibo cur=1 (line 17). In
subsequent iterations, i gets the value i+1 (via variable %inc as per lines 15 and 20), fibo prev

gets the previous value of fibo cur (via the variable %conv2 as per lines 16 and 19, where the and

operation on line 19 simply returns a copy of %fibo cur.07), and fibo cur gets the value fibo cur

+ fibo prev (via the variable %add as per lines 17 and 18). In this way, the loop body from lines
22-24 of the source program is implemented.

The loop exit condition is i+1>n (lines 21-22), which becomes true for the first time at i=n, and
at this point, the value fib curr + fib prev is returned (lines 18, 25 and 29), which is same as
fib(n-1) + fib(n-2) = fib(n).

6.4 x86 - O0 (fibo iter.i386.O0.s)

Lines 9-18 perform the usual function prologue from the callee side. Lines 21-24 perform the compar-
sion n<3 (input argument n is loaded to location -20(%ebp)) and return 1 if true (lines 27 and 65).
Otherwise, in lines 30-34, -32(%ebp) stores fib cur, -40(%ebp) stores fib prev and -44(%ebp)

stores i (it looks like -28(%ebp) and -36(%ebp) store junk values that always remain 0). The loop
condition is checked in lines 37-39, and the control enters the loop at line 42. Notice that in lines
42-43, the value of fib cur is first stored at -48(%ebp) (thus emulating tmp = fib cur), then in
lines 44-50, the assignment fib cur = fib cur + fib prev is made, followed by the assignment of
the older value of fib cur to fib prev in lines 52-53. Finally, the loop exits in lines 62-63 where
the value fib cur stored in -32(%ebp) is moved to -16(%ebp) from where it is returned to %eax

(line 65).

6.5 x86 - O2 (fibo iter.i386.O2.s)

In the O2 version, lines 9-18 simply push some registers on the stack since they will be overwritten in
the function body. Line 29 moves the input argument n (refer Figure 1) to the register %ecx. Lines
31-33 perform the comparison n<3 and if true, return 1 (lines 35-37). In lines 39-52, the loop body is
implemented using registers only where %edi stores the value of i, %eax stores fib cur, %ebp stores
tmp, %ebx stores fib prev (notice that overriding %ebp is legal here since no memory references
relative to %ebp are made). One transformation to the semantics of the source code is that tmp =

fib cur; fib cur += fib prev is replaced by the equivalent semantics tmp = fib cur; fib cur

= tmp + fib prev. Thus, lines 45-46 evaluate the new value of fib cur to %eax, line 49 implements
fib prev = tmp and line 50 implements tmp = fib cur for the next iteration. Notice that the
beginning of the loop doesn’t need a comparison for the loop condition (line 44) since it is already
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Figure 6: Cumulative CPU time for 108 invocations of fibo iter(40).

established on line 32 that n>=3, so the comparison is moved to the end on line 51 before the next
iteration.

6.6 Performance

Figure 6 shows the performance of fibo iter for various optimization levels. The improvement
from LLVM O0 to O2 is largely due to the switch from register-memory interactions to register-
register interactions. The jump seen again in x86 O0 is the introduction of various register spills.
The speed-up in x86 O2/O3 with respect to x86 O0 follows from the optmization of these register
spills.

7 Fib

7.1 Source code (fib.c)

The source code calculates the n-th Fibonacci number in a standard recursive fashion.

7.2 LLVM - O0 (fib.O0.ll)

The entry point of the fib function at line 8 allocates a memory location for the return value of the
function, the pointer to which is the variable %retval. Lines 9-11 implement the logic of storing and
loading the function input argument as usual, in this case in the variable %0. Line 12 implements
the n<2 check, which simply returns 1 (lines 16-17) if the check passes. If not, i.e. n>=2, the if.else
branch is taken.

Here, %sub stores n-1, %sub1 stores n-2. Correspondingly, %call stores the result of calling
fib(n-1), %call2 stores the result of calling fib(n-2). %add stores the sum fib(n-1)+fib(n-2)

which is returned by saving this value to the address pointed by %retval and jumping to the return
branch.

The return branch, as usual, loads the value stored in the pointer %retval and returns it using
the ret instruction.
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7.3 LLVM - O2 (fib.O2.ll)

In the O2 version, firstly, the unnecessary load/store of the input argument is removed. When the
check n<2 on line 9 is true, it directly jumps to the return block, where the phi node causes it to
return the value 1.

The code in the if.else branch is the tail-call optimized form of the function fib. When entering
the if.else branch the first time, i.e. with source if.else.preheader, the variable assignments
are %n.tr7 = n, %accumulator.tr6 = 1, %sub1 = %n.tr7-2 and %add = %accumulator.tr6 +

fib(%n.tr7 - 1). The following unfolding of the iterations of if.else explains how the value
of fib(n) is calculated:

• Iteration 1

– %n.tr7 = n

– %accumulator.tr6 = 1

– %add = 1 + fib(n-1)

– %sub1 = n-2

– Check n-2 < 2, i.e. n = 2 or 3. If true, then we have fib(n) = fib(n-1) + fib(n-2)

= fib(n-1) + 1 = %add, which is what we return on line 29.

• Iteration 2

– %n.tr7 = n - 2

– %accumulator.tr6 = 1 + fib(n-1)

– %add = (1 + fib(n-1)) + fib(n-3)

– %sub1 = n-4

– Check n-4 < 2, i.e. n = 4 or 5. If true, then we have fib(n) = fib(n-1) + fib(n-2)

= fib(n-1) + fib(n-3) + fib(n-4) = fib(n-1) + fib(n-3) + 1 = %add, which is
what we return on line 29.

• Iteration 3

– %n.tr7 = n - 4

– %accumulator.tr6 = (1 + fib(n-1)) + fib(n-3)

– %add = (1 + fib(n-1) + fib(n-3)) + fib(n-5)

– %sub1 = n-6

– Check n-6 < 2, i.e. n = 6 or 7. If true, then we have fib(n) = fib(n-1) + fib(n-2)

= fib(n-1) + fib(n-3) + fib(n-4) = fib(n-1) + fib(n-3) + fib(n-5) + fib(n-6)

= fib(n-1) + fib(n-3) + fib(n-5) + 1 = %add, which is what we return on line 29.

...
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Figure 7: Cumulative CPU time for 102 invocations of fib(40).

7.4 x86 - O0 (fib.i386.O0.s)

The code for the fib function starts at line 6, with the usual function prologue where the older base
pointer is pushed to stack (line 9), the new base pointer points to the top of the stack at this time
(line 14), and the new stack pointer points to 24 bytes lower than the base pointer (line 17) to allow
for some space for local variables. Lines 18-19 move the input argument n to the local stack frame,
and lines 20-21 evaluate the condition n<2, which, if true, saves the return value 1 in %eax (lines
23-24, 39) and restores the stack to its original state (lines 40-42).

If n>=2, the %if.else branch is taken where lines 26-28 prepare the input argument n-1 on
the current stack for the call fib(n-1) at line 29, which saves the result in %eax. Before calling
fib(n-2) at line 34, the result of fib(n-1) stored in %eax is first saved to stack (line 33), since the
call fib(n-2) would write its own result to %eax. Finally, the results of fib(n-1) and fib(n-2) are
added together (lines 35-37), and the final result is returned as before in the n<2 case (lines 39-42).

7.5 x86 - O2 (fib.i386.O2.s)

In the O2 version of the assembly, the first thing to note is that the typical callee convention as
described by Figure 1 is optimized away. Instead of saving the %ebp and making room for local
variables, execution directly starts with saving the registers %esi, %edi etc. (lines 9-15). Then the
callee assumes that the caller convention is met, and the input argument n is available at the top
of it’s activation record (line 22). Then the comparison n<2 is made in lines 22, 24, which if true,
returns 1 by saving it in the %eax register and restoring the stack and register states (lines 37-41).

If n>=2, the call fib(n-2) is tail-optimized to avoid the overhead associated with creating a
new stack frame. First a call to fib(n-1) is made (lines 29-31), then, fib(n-2) is calculated by
unfolding the recursion to call, first, fib((n-2) - 1) by re-using the code in lines 29-31, and adding
the result to fib((n-2)-2) (line 33), where the strategy to evaluate fib((n-2)-2) is the same as
the strategy to evaluate fib(n-2) described above, with n:=n-2. Notice that %edi stores the values
n, n-2, n-4 etc. and %esi accumulates the sum 1 + fib(n-1) + fib(n-2) + ... fib(2) (the
unfolding stops at fib(2) at line 34). The result is returned by moving the resulting value from
%esi to %eax and cleaning up the stack and registers (lines 37-41).
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7.6 Performance

Figure 7 shows the performance of fib at various optimization levels described above. The first thing
to notice is that the recursive version fib is many orders of magnitude slower than the iterative
version fibo iter shown in Figure 6 (notice that in Figure 7, we perform only 102 invocations
whereas in Figure 6, we perform 108 invocations). The main reason for this is that because of
the overlapping subproblem structure of the Fibonacci series, the iterative dynamic programming
version reuses the results of already calculated subproblems whereas the recursive version (even the
optimized variants) calculates the answers to the same subproblems multiple times.

The speed-up between LLVM O0 to LLVM O2 and from x86 O0 to x86 O2 is largely because
of the optimization of register-memory interactions to register-register interactions, and the tail-call
optimization of the second fib call.

8 Final Impressions

Based on the above benchmarking, it seems that one of the most influential general optimizations
(both at LLVM level and x86 level) is transforming various register-memory operations to register-
register operations. In all LLVM O2 optimizations, the overhead of load/store operations intro-
duced in LLVM O0 for storing various input arguments and return value on the stack is optimized
away by directly using multiple variables that get translated to multiple registers when creating an
executable. When compiling the LLVM O2 bitcode to x86 via the O0 flag though, additional regis-
ter spills are introduced that lead to a significant jump in the execution time. Further optimization
levels (x86 O2/O3) optimize away these register spills and are thus much faster.

Another interesting class of optimizations is the vectorization optimization, which is introduced
at LLVM O2 level and persists through all x86 codes, leading to at least a 4x speed-up for vectors of
length 4, independent of the register spills. Finally, the LLVM O2 bitcodes for some programs (e.g.
sumn and emptyloop) completely optimize away loops by transforming them to O(1) operations,
and these are therefore extremely fast for all the codes inheriting from this transformation.
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