
COL729: Lab 0 - Benchmarking 
Prashant Agrawal (2018CSZ8011)

Hardware Configuration 
CPU: Intel Core i7-7700 @ 3.60 GHz

CPU cores: 4 (siblings: 8)

Architecture: x86_64

Memory: 15.551 GB

Storage: 901 GB


Software Configuration 
OS: Ubuntu 18.04 LTS

Compilers: Clang (v3.9.0), LLVM (v6.0), Flang (v6.0.1), GCC (v7.3.0), ICC (v19.0.1)

Benchmark: SPEC CPU2017 Integer rate

SPEC tuning: Base

Copies: 4


Additional Notes 
No -march flags were specified.


Unable to run the following configurations:

• Benchmarks on ICC 32-bit: I was initially facing compilation and runtime errors with running 

various benchmarks on ICC 32-bit, but later was able to run it. However, due to the limited time 
remaining, I couldn’t run most of the configurations on ICC 32-bit.


• 548.exchange2_r on Clang 32-bit: This benchmark is written in Fortran, and the only 
supported Fortran compiler on LLVM-6.0, Flang, is not supported to work on 32-bit.


• Unoptimised benchmarks on Clang 32-bit: These benchmarks couldn’t be finished in time. 

Benchmark: 500.perlbench_r 



0

175

350

525

700

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit



Benchmark: 502.gcc_r 



Benchmark: 505.mcf_r 



0

175

350

525

700

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit

0

200

400

600

800

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit



Benchmark: 520.omnetpp_r 



Benchmark: 523.xalancbmk_r 



0

450

900

1350

1800

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit

0

500

1000

1500

2000

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit



Benchmark: 525.x264_r 



Benchmark: 531.deepsjeng_r 



0

350

700

1050

1400

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit

0

200

400

600

800

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit



Benchmark: 541.leela_r 



Benchmark: 548.exchange2_r 



0

750

1500

2250

3000

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit

0

550

1100

1650

2200

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit



Benchmark: 557.xz_r 



Which optimisations are most/least consequential? 
O1 is the most consequential optimisation, and O3 is the least consequential optimisation. In fact, 
for most benchmarks, there is very little benefit after O1 (except for Clang in some benchmarks).


Which compilers are better in what aspects? 
ICC seems to be overall best, performing especially well in higher optimisation levels. This is 
expected as the Intel compiler takes advantage of the micro-architecture specific instructions, 
whereas other compilers were used without any -march flags.


When comparing GCC with Clang, both are roughly comparable in most benchmarks by higher 
optimisation flags. Clang does aim to support most of the same optimisation flags as GCC, and 
thus this observation is as expected.


Which are faster: 32-bit or 64-bit executables? Why? 
In most cases, 64-bit executables are somewhat faster than 32-bit executables, but not by a large 
amount (some benchmarks also show that 64-bit executables are slower than 32-bit executables). 
Interestingly, optimisation passes don’t have any significant effect on the relative performance of 
32-bit vs 64-bit executables.


64-bit executables can be faster if the generated code contains 64-bit instructions and have 64-
bit data paths, which enables them to process more data than 32-bit systems. 64-bit code can 
also utilise more general purpose registers, resulting in faster access time.


0

225

450

675

900

O0 O1 O2 O3

GCC-32bit GCC-64bit CLANG-32bit CLANG-64bit
ICC-32bit ICC-64bit



How are various optimisation levels different? How do they 
differ across compilers? 
O1 optimizes with a basic set of optimisation flags to create a balance between the runtime 
performance and the compilation time. O2 optimizes more - nearly everything that doesn’t involve 
a code size vs. performance tradeoff. O3 introduces some additional optimisations on top of that.


For ICC/Clang, the vectorisation optimisations get enabled at O2, resulting in much better 
performance from O2 onwards, whereas in GCC/Clang, these optimisations get enabled only in 
O3.


Does the kind of benchmark influence the results between 
compilers? Why? 
For most benchmarks, the performance of all compilers is roughly similar by the time O3 flag is 
switched on. Notable exception to these are the video encoding benchmark 525.x264_r, and the 
combinatorial optimisation benchmark 505.mcf_r where ICC performs way better than GCC/
Clang. The reason could be attributed to extensive micro-architecture specific optimisation by 
ICC which considerably improves the predominantly arithmetic operations required for those 
benchmarks. 


