gee/g++/glortran -

clang - Version 6.0.0

Lab 0: Benchmarking

Nikhil Goyal
2015C850287

January 18, 2019

Version 7.3.0

icc/icpe/ifort - Version 19.0.1

S.No. Benchmark Language
1 500.perlbench_r C
2 502.gce_r C
3 505.mcf_r C
4 520.omnetpp_r C++
5 523.xalancbmk_r C++
6 525.x264 C
7 531.deepsjeng_r CH++
8 541.1eela_r C++
9 548.exchange2_r | Fortran 95
10 557.xz_1 C

Table 1: Benchmark numbers used in report and their corresponding language

Scare

Benchmark Score

1 2 3 4 5 6 7 8 9 10

Benchmarks

——gCC 64 emgemclang_64 emgeicc_64

Figure 1: Scores on 10 benchmarks for gcc, clang and icc

Clang produces the fastest unoptimized code in almost all the benchmarks. Gce/G++ unoptimized builds run
comparable to that of clang and in most cases difference is with the margin of experimental error. In 2°¢ and 34
benchmark (both written in C) GCC performs significantly worse than clang and icc. It could have happened that
GGC doesn’t produce optimized code by default while the others did. Intel’s compiler produces slightly slower
binaries than gce and clang in most benchmarks and scores very low on the 9" benchmark. It is written in Fortran
95 and as we can see in Fig.1, ifort under performs in comparison to gfortran. However we cannot generalize this
behavior as it’s the only benchmark written in Fortran in the intrate benchmark suite.

2

Benchmark Score

Score

1 2 3 4 5 G 7 8 9 10

Benchmarks

Figure 2: Scores on 10 benchmarks for gcec 32-bit and gec 64-bit

All benchmarks have small memory demand and hence can run in 32-bit mode. 32-bit platform are almost depre-
cated and running a 32-bit executable on a 64-bit machine has some overheads mainly because of higher kernel-call
cost because of mode switch. 64-bit platform has more registers and complex instruction set for the compiler to
work with. So in general a well-written program will run faster in 64-bit mode than in 32-bit mode. This trend can
be verified in Fig.2. Having said, because 32-bit mode has smaller address space, the native pointer size is smaller.
So in cases where a lot of pointer indirection and pointer arithmetic has to be done, 32-bit application can have
an advantage. This is exactly the case in 6 and 9 benchmark. 6" benchmark is alpha-beta tree search (alot
of pointer indirection) compiled to execute in small memory. 9*® benchmark tests many Fortran 95 array handling
features (including some intrinsic functions) for use with integer arrays.

Benchmark Score

Score

1 2 3 4 5 [7 8 9 10
Benchmarks

—e—goc 64 gcc02_64 gocd3_64

Figure 3: Scores on 10 benchmarks for gcc with O0, O2 and O3 optimization

The default unoptimized scheme takes least compilation time and mainly used for debugging purposes. O1 is the
first optimization level. The compiler tries to produce faster, smaller code without taking much compilation time.
02 is level above O1 and activates a few more flags in addition to the ones activated by O1. With O2, the compiler
will attempt to increase code performance without compromising on size, and without taking too much compilation
time. SSE or AVX may be be utilized at this level. O3 is the highest level of optimization possible. It enables
optimizations that are expensive in terms of compile time and memory usage.

O2 optimization level in gcc on average has benchmark score about 3 times that of unoptimized gcc score and O3
optimized benchmark executables are nearly twice as fast as O2 builds. The Fortran benchmark (9") really
stands out as O3 flag outputs nearly 10 times faster code than the unoptimized code. It may be attributed to the
fact that O3 enable ftree-vectorize i.e loop vectorization which could happen a lot in this benchmark as it uses
alot of array operations.

4

Yes, the kind of benchmark influences results between compliers. This can easily verified by the variance in perfor-
mance in different benchmarks in Fig.1. Different compilers use different optimization strategies while compiling
to machine code. It may so happen that a complier does better than another compiler in one program and worse
in the other program. A simple example could be that compiler A discards a piece of dead-code (code that doesn’t
affect the output) while complier B doesn’t. Then a benchmark which has some dead-code present in it will perform
better with the complier A than with compiler B.

