
COL729 : Compiler Optimizations
Assignment 0
Praneeth Kacham (2015CS10600)

Configuration:
Benchmarks are run on a machine with Ubuntu 18.04 LTS operating system. It has a quad
core Intel i7-4790S processor with 16GB of RAM. Benchmarks are run using 3 different
compilers gcc-7.3.0, icc-17.0.1.132 and clang-3.9.0. Four different optimization levels are
used for each compiler (-O0, -O1, -O2, -O3). Gcc-7.3.0 is also used to compile into 32-bit
applications.

Plots:
Following are the plots for each of the 10 benchmarks:

Few General Observations:

1. In almost all the benchmarks and almost all the compilers, running time decreases
with increasing the optimization level.

2. In most of the benchmarks, gcc_runtime < intel_runtime < clang_runtime.
3. In all the benchmarks at all optimization levels, gcc64_runtime < gcc32_runtime.
4. In few cases, applications compiled with intel and clang compilers with -O2 flag are

faster than the applications compiled with -O3 flags.

Optimization levels across compilers:

1. -O0 : Most optimizations are completely disabled at this optimization level.
2. -O1 : Activates many level 1 optimizations such as block reordering, omitting frame

pointers, branch probability guessing etc.
3. -O2 : Activates level 1 optimizations along with many level 2 optimizations such as

function aligning, loop aligning, expensive optimization routines, deleting null-pointer
checks etc.

4. -O3 : Activates level 1&2 optimizations along with level 3 optimizations such as
function inlining, loop unrolling, loop vectorizing etc.

32-bit vs 64-bit applications:
In all the benchmarks across all optimization levels, 64-bit applications are at least as fast as
32-bit applications.

1. 64-bit applications have access to more registers(16) compared to 32-bit
applications(8). This allows compiler to better optimize reads and writes to the
memory.

2. Applications can address more virtual memory which allows compilers to do more
aggressive optimizations.

3. If the memory footprint of applications is small and only few temporary variables are
used by the application, 32-bit and 64-bit applications both run in almost the same
time. In the case of gcc, xalancbmk and exchange2 benchmarks, we observe that
both 32-bit versions and 64-bit versions run in almost the same time at higher
optimization levels.

Effects of optimization levels:

1. In almost all of the benchmarks, there is a huge drop in runtimes between
applications compiled with -O0 and applications compiled with -O1.

2. In most of the benchmarks, The difference between runtimes of -O1, -O2, -O3 are
very minor. But in general they follow the trend that -O0_time > -O1_time > -O2_time
> -O3_time.

3. In few benchmarks, -O2_time < -O3_time. Compiling with -O3 flag in general
produces binaries of larger sizes compared to -O2 flag. This may sometimes lead to
higher cache miss-rates leading to performance degradation. There can also be other
application dependent effects like branch prediction accuracy etc., which may lead to
degraded performance. These kinds of effects are very dependent on specific
applications but in general applications are faster when compiled with -O3.

