
COL729 Lab0 Report

Manish Yadav
2015CS10460

1 32-bit vs 64-bit executables

It is observed that 32-bit executables are usually slower than the 64-bit ones.
For a few benchmarks, the difference is large, but in most cases, 32-bit ex-
ecutables are only slightly slower than the 64-bit ones. It’s also compiler
dependent as can be seen in the graphs. For example, 525.x264 r takes
longer time for 32-bit in clang but approximatly similar time in gcc whereas
for 520.omnetpp r, it’s the opposite. The result also seem to depend on the
optimization level. For example, using -O3 optimization in 523.xalancbmk r,
the 32-bit executables outperformed the 64-bit ones. The explanation for this
is given in the optimization section and the graph can be seen in compiler
comparison section.

The following graphs show runtime comparison for 32-bit and 64-bit using
gcc and clang (unoptimized) -

Figure 1: 32-bit vs 64-bit comparison in clang

1



Figure 2: 32-bit vs 64-bit comparison in gcc

2 Compiler comparisons

It was found that icc is better than gcc and clang in most of the cases for
both 32 and 64-bit executables. Clang performed only slightly better than
gcc in most of the benchmarks except for 531.deepsjeng r and 525.x264 r
where clang outperformed even icc. The graphs are shown below (all use
-O3) -

Figure 3

2



Figure 4

Figure 5

3



Figure 6

Figure 7

4



Figure 8

Figure 9

5



Figure 10

Figure 11

6



Figure 12

3 Optimization levels

The following graph shows the performances for different optimization levels
in gcc.

Figure 13: Comparison b/w different optimization levels in gcc

7



We see that -O1, -O2, -O3 are all better than -O0 (unoptimized) as to be
expected. Also, the following rule is observed in most of the benchmarks -

−O2 > −O3 > −O1

This is to be expected. -O1 only does moderate optimization so as to not
degrade the compile time too much whereas -O2 generates highly optimized
code at the cost of compilation time. -O3 also does full optimization like -O2
but also use aggressive inlining of subprograms within a unit and attempts
to vectorize loops. This maked the program not fit in the instruction cache
and makes the execution time slower for -O3. For some benchmarks, -O3
outperforms -O2. This is probably because these benchmarks contain critical
loops that actually benefit from the loop unrolling done by -O3.

4 Influence of benchmarks on results between

compilers

It was observed that the benchmarks do affect the results between compilers.

1. 531.deepsjeng r and 525.x264 r had clang outperforming even icc.

2. For 523.xalancbmk r, the 32-bit executables were better than the 64-bit
ones.

3. In 505.mcf r, gcc performs slightly better than clang.

8


