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1 32-bit vs 64-bit executables

It is observed that 32-bit executables are usually slower than the 64-bit ones.
For a few benchmarks, the difference is large, but in most cases, 32-bit ex-
ecutables are only slightly slower than the 64-bit ones. It’s also compiler
dependent as can be seen in the graphs. For example, 525.x264 r takes
longer time for 32-bit in clang but approximatly similar time in gcc whereas
for 520.omnetpp_r, it’s the opposite. The result also seem to depend on the
optimization level. For example, using -O3 optimization in 523.xalancbmk r,
the 32-bit executables outperformed the 64-bit ones. The explanation for this
is given in the optimization section and the graph can be seen in compiler
comparison section.

The following graphs show runtime comparison for 32-bit and 64-bit using
gee and clang (unoptimized) -

Comparison b/w 32 and 64 bit architectures using Clang
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Figure 1: 32-bit vs 64-bit comparison in clang



Comparison b/w 32 and 64 bit architectures using gcc (-03)
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Figure 2: 32-bit vs 64-bit comparison in gcc

2 Compiler comparisons

It was found that icc is better than gcc and clang in most of the cases for
both 32 and 64-bit executables. Clang performed only slightly better than
gce in most of the benchmarks except for 531.deepsjeng.r and 525.x264_r
where clang outperformed even icc. The graphs are shown below (all use

-03) -

Comparison b/w different compilers for 500.perlbench _r
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Comparison b/w different compilers for 502.gcc_r
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Comparison b/w different compilers for 505.mcf _r
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Comparison b/w different compilers for 520.omnetpp _r
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Comparison b/w different compilers for 523.xalancbmk_r
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Comparison b/w different compilers for 525.x264 r
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Comparison bfw different compilers for 531.deepsjeng_r
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Comparison b/w different compilers for 541.leela r
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Comparison b/w different compilers for 548.exchange2 r
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Comparison b/w different compilers for 557.xz_r
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3 Optimization levels

The following graph shows the performances for different optimization levels
in gcc.

Comparison b/w different optimization levels using gcc (64 bit)
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Figure 13: Comparison b/w different optimization levels in gec



We see that -O1, -02, -O3 are all better than -O0 (unoptimized) as to be
expected. Also, the following rule is observed in most of the benchmarks -

-02>-03>-01

This is to be expected. -O1 only does moderate optimization so as to not
degrade the compile time too much whereas -O2 generates highly optimized
code at the cost of compilation time. -O3 also does full optimization like -O2
but also use aggressive inlining of subprograms within a unit and attempts
to vectorize loops. This maked the program not fit in the instruction cache
and makes the execution time slower for -O3. For some benchmarks, -O3
outperforms -O2. This is probably because these benchmarks contain critical
loops that actually benefit from the loop unrolling done by -O3.

4 Influence of benchmarks on results between
compilers
It was observed that the benchmarks do affect the results between compilers.
1. 531.deepsjeng r and 525.x264 r had clang outperforming even icc.

2. For 523.xalancbmk_ r, the 32-bit executables were better than the 64-bit
ones.

3. In 505.mcf r, gce performs slightly better than clang.



