COLT729 Lab0 Report

Manish Yadav
2015CS10460

1 32-bit vs 64-bit executables

It is observed that 32-bit executables are usually slower than the 64-bit ones.
For a few benchmarks, the difference is large, but in most cases, 32-bit ex-
ecutables are only slightly slower than the 64-bit ones. It’s also compiler
dependent as can be seen in the graphs. For example, 525.x264 r takes
longer time for 32-bit in clang but approximatly similar time in gcc whereas
for 520.omnetpp_r, it’s the opposite. The result also seem to depend on the
optimization level. For example, using -O3 optimization in 523.xalancbmk r,
the 32-bit executables outperformed the 64-bit ones. The explanation for this
is given in the optimization section and the graph can be seen in compiler
comparison section.

The following graphs show runtime comparison for 32-bit and 64-bit using
gee and clang (unoptimized) -

Comparison b/w 32 and 64 bit architectures using Clang

700 4 B Clang32
H Clang64

600

Runtimes(seconds)

Benchmarks

Figure 1: 32-bit vs 64-bit comparison in clang



Comparison b/w 32 and 64 bit architectures using gcc (-03)

3300 N goc32

- gec6d

8
8

NN
o a
S o
s o

1500 4

Runtimes(seconds)

H
=]
=]
s

@
<]
=]

04

Benchmarks

Figure 2: 32-bit vs 64-bit comparison in gcc

2 Compiler comparisons

It was found that icc is better than gcc and clang in most of the cases for
both 32 and 64-bit executables. Clang performed only slightly better than
gce in most of the benchmarks except for 531.deepsjeng.r and 525.x264_r
where clang outperformed even icc. The graphs are shown below (all use

-03) -

Comparison b/w different compilers for 500.perlbench _r

. 32

I 64
500 ~

& &
=] S

Runtimes(seconds)

[

[=]

[=]
1

100 +

&

Compilers

Figure 3



Runtimes(seconds)

Runtimes(seconds)

Comparison b/w different compilers for 502.gcc_r

350 1 32
I 54
300
250 A
200 A
150 +
100 1
50 A
0 -
1 =]
‘\
d" b‘b
Compilers
Figure 4
Comparison b/w different compilers for 505.mcf _r
500 -
400
300 A
200
100 +
0 -
12 S
(\
& b'a
Compilers
Figure 5




Runtimes(seconds)

Runtimes(seconds)

Comparison b/w different compilers for 520.omnetpp _r

mm 32

I 54
600
500 A
400 A
300 A
200 A
100 +
0 -

C
Compilers
Figure 6
Comparison b/w different compilers for 523.xalancbmk_r

500 A . 32

64
400 A
300 A
200 A
100 4
0 -

S
&
Compilers

Figure 7




Runtimes(seconds)

Runtimes(seconds)

Comparison b/w different compilers for 525.x264 r

600

500 A

400 -

100 +

d}’ b‘b“q

Compilers

Figure 8

Comparison bfw different compilers for 531.deepsjeng_r

700

600

500 -

400 -

300 ~

200 A

100 +

&

Compilers

Figure 9

. 32
. 54




Comparison b/w different compilers for 541.leela r

700

600

500 -

Runtimes(seconds)
]
[=]
1

300 A
200 A
100 -
0 -
&
Compilers
Figure 10
Comparison b/w different compilers for 548.exchange2 r
. 32
400 - 64
= 300 -
8
[=
[=]
(W)
W
2]
N
£ 200 -
=
c
=0
[
100 A
0 -
S
&
Compilers

Figure 11




Comparison b/w different compilers for 557.xz_r
600

500 A

Runtimes(seconds)
& ]
=] =]

M

o

=
L

100 +

&

Compilers

Figure 12

3 Optimization levels

The following graph shows the performances for different optimization levels
in gcc.

Comparison b/w different optimization levels using gcc (64 bit)

. 00
2500 4 [__Jeil
02
. o3
7 20001
=
o
o
v
21500
@
o
E
€
< 1000
&
500
o
'Q‘; (,’.1 65 Q7 \{.5 h§ q& 27 '1,‘} 1,3
S8 & & S O FAF
& Fot Fpt &
¢ K A A
< oy F, &
L o F
Benchmarks

Figure 13: Comparison b/w different optimization levels in gec



We see that -O1, -02, -O3 are all better than -O0 (unoptimized) as to be
expected. Also, the following rule is observed in most of the benchmarks -

-02>-03>-01

This is to be expected. -O1 only does moderate optimization so as to not
degrade the compile time too much whereas -O2 generates highly optimized
code at the cost of compilation time. -O3 also does full optimization like -O2
but also use aggressive inlining of subprograms within a unit and attempts
to vectorize loops. This maked the program not fit in the instruction cache
and makes the execution time slower for -O3. For some benchmarks, -O3
outperforms -O2. This is probably because these benchmarks contain critical
loops that actually benefit from the loop unrolling done by -O3.

4 Influence of benchmarks on results between
compilers
It was observed that the benchmarks do affect the results between compilers.
1. 531.deepsjeng r and 525.x264 r had clang outperforming even icc.

2. For 523.xalancbmk_ r, the 32-bit executables were better than the 64-bit
ones.

3. In 505.mcf r, gce performs slightly better than clang.



