
Lab0: Benchmarking apparatus
COL729: Compiler Optimizations

Priyanka Singla (2018ANZ8387)

January 14, 2019

1 Comparison: GCC vs. ICC vs. Clang

1.1 Experimental Setup

The experiments were run on a Desktop system with Intel(R), Core i7−6700,
processor running at a frequency of 3.40GHz. The system ran Ubuntu Linux
16.04. Following compiler versions were used:

1. GCC: version 5.5

2. ICC: Intel Parallel Studio XE 2019

3. Clang: version 3.8

For all the experiments, each benchmark was executed twice and the greater
of the two values is reported. The experiments were performed in isolation
(total cpu utilization for any other process in the system was less than 10%),
so that the results reflect the actual performance.

Analysis The results clearly show that unoptimized applications under-
perform than the optimized applications. Most effective optimization (best):
icc (in most cases) Least effective optimization (not good): clang

1. Which compilers are better in what aspects? I present the comparison
for the compilers based on two parameters: i)Build times ii)Execution
times Build time: The build times for the 32/64 bit executables were
as follows (for O0 optimization): i)gcc 73-76 sec, ii)icc 104-111 sec
iii)clang 74-80 sec Similarly for building benchmarks with o3 (64-bit)

1



32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

500

1000

1500

2000

2500

R
u
n
ti

m
e
(s

)

exchange2_r
GCC ICC Clang

(a)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

200

400

600

800

1000

R
u
n
ti

m
e
(s

)

xz_r
GCC ICC Clang

(b)

Figure 1: Benchmark Results

flag, the times taken were: i) gcc 190s, ii)icc 500s, iii) clang 164s So
from compile time perspective gcc and clang are far better than icc.

Execution time: However, at O0 optimization level, the executables
compiled by icc have higher runtimes in comparison to gcc and clang.
Infact the unoptimized clang executable has the best running time for
almost all the benchmarks (except gcc r). While when optimizations
are applied, clang’s performance is similar to other compilers for most of
the benchmarks. Infact, for certain benchmarks like leela, xalancbmk,
omnetpp, the optimized clang executables perform quite poorly than
icc’s and gcc’s cptimized executables.

In contrast, an unoptimized icc executable (O0) has the worst perfor-
mance. However, the optimized icc executable performs the best for
most of the benchmarks (except gcc r). Another observation is that
x264 benchmark compiled using icc at o1 does not perform very well.
Thus in conclusion: if we are concerned with total (compile + exe-
cution) time, then using gcc compiler is a good option, while if only
execution time is considered then using icc (with optimization level >
1) is best suited.

2. Which are faster: 32-bit or 64-bit executables? Why? Running times
were found to be similar for both 32-bit and 64-bit executables for
most of the benchmarks, however 64-bit executables were on faster side.

2



The 64-bit benchmarks had large size, around 25% − 30% more, than
32-bit executables. Due to their large size, they would have required
more memory and hence probably would have more time for accessing
RAM (upon a cache miss). However, despite their large size, they were
faster because according to the article[1], where a math-heavy code
when compiled in a 64-bit environment can get the benefits of new
capabilities of 64-bit processor. Our intrate benchmark suite performs
compute intensive integer operations and hence performs better as a
64-bit executable. Also 64-bit executables benefits from extra general
purpose registers.

3. How are the various optimisation levels different? How do these differ
across compilers? As the optimization level is increased from 1 to
3, the size of the code generated is also increased and the program
execution becomes faster. Also the compilation time increases with
increase in optimization level. At the first level (-O1) the focus is on
reducing code size and execution time, and very basic optimizations are
performed (the optimizations which take more compilation time are not
done). The next level (-O2) further perform optimizations which do not
involve space-speed tradeoffs and increases the compilation time and
performance. The next level (-O3), in addition to optimizations by -
O2, includes features like loop unrolling, function inlining which involve
space-time trade offs, thus resulting in a larger executable which will
probably be faster. There are two more optimization levels, namely
-Os and -Ofast. The former optimizes size, and includes optimizations
similar to -O2 except those which increase the size. Infact it performs
optimizations to reduce size. The later optimization, -Ofast, is even
more agressive than -O3 and can result in incorrect code, and hence is
not recomended.

The results show that the performance increases dramatically when
optimization is applied to an unoptimized code. The behaviour across
compilers is as follows:

• For gcc, the runtime decreases by 6% − 10% with increase in op-
timization level (from 1 to 2), while from -O2 to -O3 the perfor-
mance does not increase much (around3%).

• Similarly, for icc the runtimes follow a decreasing trend, i.e. from
-O1 to -O2 the run time decreases by 10%−45%. However for cer-

3



tain benchmarks like X264 the runtime from -O1 to -O2 decreases
considerably. The runtimes from -O2 to -O3 are not affected much.

• For clang, similar decrements 8%−35% were observed for most of
the benchmarks. However, for Xalan and Leela benchmarks, the
runtimes from -O1 to -O2 decreased considerably. In contrast,
for exchange(-O2 to -O3) and mcf(-O1 to -O2) benchmarks the
runtimes increased with optimization level, thus indicating that
higher optimization level does not always lead to higher perfor-
mance.

4. Does the kind of benchmark influence the results between compilers?
Why? Yes, as can be seen in the results, omnetpp’s and xalan’s runtime
decrease with more rate with increase in optimization level for clang
compiler (from -O1 to -O2), while for other benchmarks similar rates
were followed.

2 References

1. Moving from 32-bit applications to 64-bit applications.

4



32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

100

200

300

400

500

600

700

800

R
u
n
ti

m
e
(s

)

perlbench_r
GCC ICC Clang

(a)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

100

200

300

400

500

600

700

R
u
n
ti

m
e
(s

)

gcc_r
GCC ICC Clang

(b)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

100

200

300

400

500

600

700

R
u
n
ti

m
e
(s

)

mcf_r
GCC ICC Clang

(c)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

200

400

600

800

1000

1200

1400

1600

R
u
n
ti

m
e
(s

)

omnetpp_r
GCC ICC Clang

(d)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

500

1000

1500

2000

R
u
n
ti

m
e
(s

)

xalancbmk_r
GCC ICC Clang

(e)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

200

400

600

800

1000

1200

1400

1600

R
u
n
ti

m
e
(s

)

x264_r
GCC ICC Clang

(f)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

100

200

300

400

500

600

700

800

900

R
u
n
ti

m
e
(s

)

deepsjeng_r
GCC ICC Clang

(g)

32
_o

0

32
_o

1

32
_o

2

32
_o

3

64
_o

0

64
_o

1

64
_o

2

64
_o

3
0

500

1000

1500

2000

2500

3000

R
u
n
ti

m
e
(s

)

leela_r
GCC ICC Clang

(h)

Figure 2: Benchmark Results contd.

5


